Porcine embryonic stem cells (ESCs) are excellent models for exploring embryogenesis, producing genetically enhanced farm animals, and improving breeding. Various chemicals have been applied to generate porcine ESCs from embryos, which differ from mouse and human ESC derivation. Wnt inhibitors XAV939 or IWR1 are required to isolate and maintain porcine ESCs. How Wnt inhibitors specify porcine ESC fate decisions remains poorly understood. Additionally, whether porcine ESCs can be converted to extraembryonic endoderm (XEN) cells without genetic interventions has not been reported. Here, it is reported that Wnt inhibitors (i.e., XAV939 and IWR1) safeguard porcine ESCs from acquiring the XEN lineage. Porcine ESCs rely on Wnt inhibitors to maintain pluripotency. Without them, porcine ESCs exit from pluripotency and convert to XEN cells. An efficient strategy and culture conditions are further developed to directly derive porcine XEN cells from ESCs without gene editing. The resulting XEN cells from ESCs exhibit similar transcriptome and chromatin accessibility features to XEN cells from embryos and contribute to mouse extraembryonic tissues. This study will deepen the understanding of porcine pluripotency, lay the foundation for deriving high-quality porcine ESCs with germline chimerism and transmission, and provide valuable materials to study extraembryonic development and lineage segregation in livestock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202416802 | DOI Listing |
Adv Sci (Weinh)
March 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310030, China.
Porcine embryonic stem cells (ESCs) are excellent models for exploring embryogenesis, producing genetically enhanced farm animals, and improving breeding. Various chemicals have been applied to generate porcine ESCs from embryos, which differ from mouse and human ESC derivation. Wnt inhibitors XAV939 or IWR1 are required to isolate and maintain porcine ESCs.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
Zearalenone (ZEA) is a mycotoxin commonly found in moldy cereals and has a range of toxic effects that have seriously affected animal husbandry. Rutin, a natural flavonoid with antioxidant activities, has been studied for its potential involvement in mitigating ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) and its potential molecular mechanism, particularly concerning the expression of Nrf2. This study investigates the molecular pathways by which rutin alleviates ZEA-induced ESC apoptosis, focusing on the role of Nrf2.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China. Electronic address:
Zearalenone (ZEA) is an environmentally widespread mycotoxin capable of posing a serious threat to food safety and public health, and porcine endometrial stromal cells (ESCs) are particularly sensitive to the toxic effects of ZEA. We hypothesized that Rutin, a flavonoid antioxidant, could significantly alleviate ZEA-induced ferroptosis through the p53 signaling pathway. In this study, we used porcine ESCs as a research model.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China.
Zearalenone (ZEA) induces oxidative damage in porcine endometrial stromal cells (ESCs), which is a critical factor affecting the growth and reproduction of female pigs. We hypothesize that rutin, a flavonoid antioxidant, can alleviate ZEA-induced cellular damage through the p53 signaling pathway. In this experiment, porcine ESCs were used as a research model.
View Article and Find Full Text PDFTheriogenology
September 2024
Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, 25354, Republic of Korea. Electronic address:
Here, we examined the effects of the BMP signaling pathway inhibitor LDN-193189 on the pluripotency of porcine embryonic stem cells (ESCs) in the absence of feeder cells using molecular and transcriptomic techniques. Additionally, the effects of some extracellular matrix components on porcine ESC pluripotency were evaluated to develop an optimized and sustainable feeder-free culture system for porcine ESCs. Feeder cells were found to play an important role in supporting the pluripotency of porcine ESCs by blocking trophoblast and mesodermal differentiation through the inhibition of the BMP pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!