Today, water quality monitoring is crucial due to the health and environmental consequences of water pollution. Recently, various attempts have been made to construct rapid, sensitive, and selective heavy metal ion sensors. Fluorescent sensors are popular owing to their high specificity, sensitivity, and reversibility. Rhodamine derivative-based biosensors are acknowledged as a promising chemical for the synthesis of chemosensors due to their remarkable measurable properties, including responsible absorption rate, electromagnetic emission coefficient, significant fluorescent quantum yield, stability against photoenergy, and extensive wavelength range. The detection of metal ions in various concentrations by rhodamine probes followed multiple mechanisms, one common pathway is opening the spirolactam ring within the rhodamine scaffold which leads to colorimetric and fluorometric signals. Rhodamine itself is less emissive and less colorful when the spirolactam ring is present within the framework and would become strongly emissive with versatile coloring range (red, orange or purple etc.) once the ring is opened. Numerous efforts have been undertaken to employ rhodamine-based chemosensors (RBC) for the detection of diverse metal ions in analytical studies (both in-vivo and in-vitro way). This article therefore discusses the major method and potential strategy for RBC and this review is expected to bring new clues and bright ideas to researchers for further advances in rhodamine-based chemosensors in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-025-04221-1 | DOI Listing |
Phys Chem Chem Phys
March 2025
Brookhaven National Laboratory, Upton, NY, 11973, USA.
Chromium (Cr) is a frequent constituent of the metal alloys proposed for molten salt nuclear reactor (MSR) applications, and is typically the least noble metal ion present. Consequently, chromium is preferentially corroded into molten salt solutions. The redox poise and redox cycling of chromium ions in the salt can greatly influence its corrosivity towards structural alloys, ultimately impacting the longevity of MSR systems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, P. R. China.
Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs.
View Article and Find Full Text PDFSmall
March 2025
Department of Nanoenergy Engineering, Pusan National University, 50, Busan daehak-ro 63 beon-gil 2, Busan, Geumjeong-gu, 46241, Republic of Korea.
With the explosive growth of lithium-ion batteries (LIBs), research on the recycling of spent batteries is widely conducted. However, conventional processes involve complex procedures, high costs, and environmental issues. This study introduces the electrochemical upcycling of spent LiMnO (LMO) cathode material, incorporating pre-filtration (PF) and pre-reduction (PR) processes to enable its direct application in redox flow batteries (RFBs).
View Article and Find Full Text PDFRSC Adv
March 2025
Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
Natural enzymes, despite their superior catalytic proficiency, are frequently constrained by their environmental sensitivity and the intricacies associated with their extraction and preservation. Consequently, there has been a significant impetus in the scientific community to develop robust, economical, and accessible enzyme mimics. In this context, transition metal borides have risen to prominence as auspicious contenders, capitalizing on their distinctive electronic and catalytic attributes to replicate the functionalities of natural enzymes.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, P. R. China, 300350.
While nucleic-acid-based cancer vaccines hold therapeutic potential, their limited immunogenicity remains a challenge due in part to the low efficiency of cytoplasmic delivery caused by lysosomal entrapment. In this work, we found that plasmids encoding both an antigen and a STING agonist protein adjuvant can self-assemble into coordination nanofibers, triggered by manganese ions. We developed a strategy to construct a DNA vaccine, termed MnO-OVA-CDA-mem, formed by the coencapsulation of manganese dioxide (MnO), an antigen-expressing plasmid (encoding ovalbumin, OVA), and an adjuvant enzyme-expressing plasmid (encoding STING agonist, CDA) within dendritic cell (DC) membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!