Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-025-01184-wDOI Listing

Publication Analysis

Top Keywords

seed germination
24
ceratobasidium fungi
12
compatible strains
12
germination
8
germination widespread
8
widespread terrestrial
8
terrestrial orchid
8
china twelve
8
ceratobasidium strains
8
ability support
8

Similar Publications

The fate of biodegradable polylactic acid microplastics in maize: impacts on cellular ion fluxes and plant growth.

Front Plant Sci

February 2025

Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China.

The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize.

View Article and Find Full Text PDF

Wheat E3 ligase is involved in drought stress tolerance in transgenic .

Physiol Mol Biol Plants

February 2025

Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea.

Unlabelled: , a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in confirmed predominant nucleus localization.

View Article and Find Full Text PDF

The slow growth rate of Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones.

View Article and Find Full Text PDF

To enhance the cultivation and utility of alfalfa (Medicago sativa) in calcium-rich environments, we assessed the germination, growth, and physiological responses of seven alfalfa varieties-Crown, Dieter, PANGO, Gladiator, Victoria, WL525, and Magnum 801-under varying calcium chloride (CaCl) concentrations (0, 5, 25, and 50 mmol·L). Germination indices, root and shoot growth, enzyme activities, and osmotic regulation parameters were analyzed to evaluate adaptive responses to calcium stress. Our results showed that alfalfa adapts to calcium stress by increasing root length, enhancing enzyme activities, regulating osmotic substance content, and reducing malondialdehyde levels, thereby striving to maintain stable dry matter content.

View Article and Find Full Text PDF

The release of petroleum hydrocarbons (PHCs) into the environment is primarily linked to petroleum industry activities, including drilling, exploration, storage, and related processes. The spillage of PHCs into the environment poses significant threats to ecosystems and can lead to serious risks to human health, the environment, and plants. This research aims to investigate the phytotoxic effect of petroleum sludge on the germination and growth characteristics of Salicornia sinus-persica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!