Molecular adsorption induces normal stresses at frictional interfaces of hydrogels.

Soft Matter

Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.

Published: March 2025

Friction experiments were conducted on hydrogel thin films sliding against a rigid sphere in a low velocity regime where molecular adsorption at the sliding interface sets the friction force, through a dissipative adsorption-stretching-desorption mechanism initially postulated by Schallamach [A. Schallamach, , 1963, , 375]. By carefully imaging the contact from the initial indentation step of the sphere into the hydrogel to steady state sliding, we evidence for the first time that this very same adsorption mechanism also results in a normal force embedding the sphere further into the hydrogel. Observations of this tangential-normal coupling are made on a variety of chemically modified silica spheres, over 3 decades in velocity and at varied normal loads, thereby demonstrating its robustness. Quantitative measurements of the extra normal force and of the friction-velocity relationship normal load are well rationalized within a theoretical model based on the thermal actuation of molecular bonds. To do so, we account for the finite non-zero thickness of the sliding interface at which molecular adsorption and stretching events produce an out-of-plane force responsible for both friction and normal adhesive-like pull-in.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01439aDOI Listing

Publication Analysis

Top Keywords

molecular adsorption
12
sliding interface
8
sphere hydrogel
8
normal force
8
normal
6
molecular
4
adsorption induces
4
induces normal
4
normal stresses
4
stresses frictional
4

Similar Publications

Lipid nanoparticles (LNPs) are efficient and safe carriers for mRNA vaccines based on advanced ionizable lipids. It is understood that the pH-dependent structural transition of the mesoscopic LNP core phase plays a key role in mRNA transfer. However, buffer-specific variations in transfection efficiency remain obscure.

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

Shellac-based nanoparticles provide highly stable Pickering emulsions.

Int J Biol Macromol

March 2025

Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel. Electronic address:

This study investigates the hypothesis that modified shellac nanoparticles (NPs) can effectively stabilize Pickering emulsions. Shellac, a natural polyester resin derived from the secretion of insects, was chemically modified using Jeffamine® M600 and Jeffamine® ED2003 to produce two NP types: Sh-M600 and Sh-ED2003, with sizes ranging from 127 to 183 nm. These NPs were used to stabilize oil-in-water emulsions with isopropyl myristate (IPM).

View Article and Find Full Text PDF

Unlabelled: ETHNIC PHARMACOLOGICAL RELEVANCE: "Cyathula officinalis Kuan (COK)" has the effect of "guiding the drug downward" and can enhance the efficacy of formula, e.g., Shentong Zhuyu Decoction (STZYD).

View Article and Find Full Text PDF

The adsorption technique has opened a new frontier in the field of purification through hemodialysis. This technique has proved to be effective in removing uremic toxins previously deemed inaccessible due to their size or charge, as well as to their molecular interactions with blood proteins. In this context, this review provides a detailed explanation of the role of Polyester-polymer alloy (PEPA®) membranes and hemodiafiltration with endogenous reinfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!