Anaplastic thyroid cancer represents the most aggressive form of thyroid cancer and harbors BRAF mutations in over 40% of cases. Vemurafenib (PLX4032), a BRAF kinase inhibitor, shows promise in BRAFV600E-positive advanced thyroid cancer but may promote resistance in anaplastic cases. This study investigates whether mannose, known to selectively inhibit thyroid cancer, enhances PLX4032 efficacy. To evaluate whether mannose could enhance the response of anaplastic thyroid cancer cells to vemurafenib, we employed several in vitro assays including MTT, colony formation, flow cytometry, migration, and invasion assays. Additionally, we performed in vivo assays using mouse models with subcutaneous xenografts. Our findings demonstrated that vemurafenib and mannose synergistically inhibit anaplastic thyroid cancer cells proliferation. The combined treatment significantly impeded anaplastic thyroid cancer cells migration and invasion while promoting apoptosis. In vivo studies corroborated these observations. The underlying mechanism by which mannose potentiates the anti-tumor effects of vemurafenib was explored using the Seahorse XFe96 Analyzer to measure glycolysis parameters and Western blotting to assess the expression of associated proteins. Mechanistically, vemurafenib reduced the expression of ZIP10, which in turn decreased the enzyme activity of phosphomannose isomerase. This suppression of ZIP10 enhanced mannose-mediated inhibition of glycolysis and thus its anti-tumor effect, as confirmed by rescue experiments with ZIP10 overexpression. The resulting decrease in glycolysis led to lower ATP levels, which are essential for the phosphorylation of ERK and AKT. Therefore, the combination of vemurafenib and mannose inhibited the levels of pERK and pAKT, thereby improving the effectiveness of PLX4032 in treating anaplastic thyroid cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-24-0209DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
36
anaplastic thyroid
24
cancer cells
12
thyroid
9
cancer
9
migration invasion
8
vemurafenib mannose
8
anaplastic
7
mannose
6
vemurafenib
6

Similar Publications

Ocular motor cranial neuropathy and risk of thyroid cancer: A Korean population-based study.

PLoS One

March 2025

Department of Ophthalmology, Hallym University School of Medicine, Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea.

This study investigates whether ocular motor cranial neuropathy (OMCN) can predict the onset of thyroid cancer given its association with common cardiovascular risk factors including obesity, diabetes mellitus (DM), hypertension, and dyslipidemia. We conducted a retrospective, nationwide, population-based cohort study utilizing data from the Korean National Health Insurance Service. Individuals comprised those aged ≥ 20 years diagnosed with OMCN between 2010 and 2017.

View Article and Find Full Text PDF

SCN3B is an Anti-breast Cancer Molecule with Migration Inhibition Effect.

Biochem Genet

March 2025

Department of Gynecology, People's Hospital of Jianshi, Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China.

Breast cancer is a prevalent and highly heterogeneous malignancy that continues to be a major global health concern. Voltage-gated sodium channels are primarily known for their role in neuronal excitability, but emerging evidence suggests their involvement in the pathogenesis of various cancers, including breast cancer. However, the effect of β-subunits on breast cancer cells is not yet studied.

View Article and Find Full Text PDF

Background: Thyroid cancer is a prevalent malignant tumor, especially with a higher incidence in women. Tumor microenvironment changes induced by inflammation and alterations in metabolic characteristics are critical in the development of thyroid cancer. Nevertheless, their causal relationships remain unclear.

View Article and Find Full Text PDF

This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion.

View Article and Find Full Text PDF

Validation of Diagnostic Utility of Washout CYFRA 21-1 in Lymph Node Metastasis of Thyroid Cancer.

Clin Cancer Res

March 2025

Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea, Seoul, Korea (South), Republic of.

Purpose: Traditional methods, fine-needle aspiration cytology (FNAC) and washout thyroglobulin (Tg), do not always provide sufficient accuracy for diagnosing lymph node (LN) metastasis in thyroid cancer. This study aimed to validate the diagnostic performance of washout cytokeratin fragment 21-1 (CYFRA 21-1) as a complementary biomarker for diagnosing metastatic LNs in thyroid cancer and to explore its relationship with molecular analysis and distant metastasis.

Patients And Methods: In this retrospective cohort study involving 230 LNs in 224 patients with PTC, FNAC, washout Tg, and CYFRA 21-1 levels were measured in suspicious LNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!