The synthesis of bioactive oxazoles is often inefficient, and the reported methods remain largely unexplored for complex derivatives. To circumvent this issue, we have utilized a metal-free, photomediated [3 + 2] cycloaddition reaction between diazo compounds and nitriles, leading to a step- and reagent-economical synthesis of bioactive oxazoles. These exciting developments guided us in the efficient synthesis of oxazole-based natural products like annuloline, alkaloids like pimprinethine, labradorin 2, and oxazole-containing pharmaceuticals such as oxaprozin. Utilizing this approach, we have also demonstrated efficient synthesis of deuterium-labeled and heterocyclic-based oxazoles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5c00806 | DOI Listing |
Org Lett
March 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
The synthesis of bioactive oxazoles is often inefficient, and the reported methods remain largely unexplored for complex derivatives. To circumvent this issue, we have utilized a metal-free, photomediated [3 + 2] cycloaddition reaction between diazo compounds and nitriles, leading to a step- and reagent-economical synthesis of bioactive oxazoles. These exciting developments guided us in the efficient synthesis of oxazole-based natural products like annuloline, alkaloids like pimprinethine, labradorin 2, and oxazole-containing pharmaceuticals such as oxaprozin.
View Article and Find Full Text PDFJ Org Chem
March 2025
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322.
A highly efficient and expedient method for the synthesis of 4,5-disubstituted oxazoles has been developed directly from carboxylic acids, employing a stoichiometric amount of the easy-to-access and stable triflylpyridinium reagent. The overall transformation proceeds through the formation of an generated acylpyridinium salt followed by trapping with isocyanoacetates and tosylmethyl isocyanide. This transformation has a broad substrate scope with good functional group tolerance (including hindered and less reactive substrates or those containing sensitive functional groups).
View Article and Find Full Text PDFJ Agric Food Chem
February 2025
College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
The utilization of novel organic synthesis methods is increasingly critical in the development of innovative agrochemicals. In this study, we designed and synthesized a series of chiral oxazoline derivatives using a one-pot method. This method involved first catalyzing the asymmetric aldol addition reaction of oxazolinyl esters with paraformaldehyde, followed by esterification with various pharmacophore-containing carboxylic acids.
View Article and Find Full Text PDFJ Agric Food Chem
February 2025
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
Sulfonamide derivatives have been widely used for pesticide research in recent years. Herein, 1,3,4-oxadiazole sulfonamide derivatives containing a pyrazole structure were synthesized, and their structure-activity relationship was studied. Bioactivity tests showed the remarkable efficacy of most synthesized compounds.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Department of Chemistry, Constituent Govt. College, (MJP. Rohilkhand University Bareilly) Hasanpur, (UP), 244241, India.
Introduction: Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.
Methods: A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!