Objective: This study investigates the role of membrane-associated protein 17 (MAP17) and the Akt signaling pathway in the progression of papillary thyroid carcinoma (PTC).
Materials And Methods: We conducted a series of in vitro experiments using PTC cell lines (HTori-3 and TPC-1). Cells were divided into three groups: control, MAP17 inhibitor negative control (NC), and MAP17 inhibitor treatment. Cell viability was assessed at 0, 24, 48, and 72 hours using the Cell Counting Kit-8 (CCK-8) assay. Apoptosis levels were measured by flow cytometry, and protein and mRNA expression of MAP17, phosphorylated Akt (p-AKT), and Akt were analyzed by Western blot and qRT-PCR.
Results: Cell viability in the control, MAP17 inhibitor NC, and MAP17 inhibitor groups increased significantly over time (P < 0.05). Notably, in both HTori-3 and TPC-1 cells, the MAP17 inhibitor significantly reduced cell viability compared to the control and NC groups at 24, 48, and 72 hours (P < 0.05). Furthermore, apoptosis levels were significantly higher in the MAP17 inhibitor group compared to the control and NC groups (P < 0.05). Western blot and qRT-PCR analyses revealed that MAP17 and p-Akt protein and mRNA levels were significantly higher in the control and NC groups compared to the MAP17 inhibitor group (P < 0.05). However, no significant differences in total Akt protein or mRNA levels were observed across groups.
Conclusion: Our findings suggest that MAP17 and the Akt signaling pathway play a crucial role in promoting the progression of PTC. Inhibition of MAP17 suppresses cell viability and induces apoptosis, indicating that MAP17 may be a promising therapeutic target for PTC. The data also highlight the potential for targeting the MAP17-Akt axis in developing future treatments for PTC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.20945/2359-4292-2024-0342 | DOI Listing |
Arch Endocrinol Metab
March 2025
Department of Head Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai China.
Objective: This study investigates the role of membrane-associated protein 17 (MAP17) and the Akt signaling pathway in the progression of papillary thyroid carcinoma (PTC).
Materials And Methods: We conducted a series of in vitro experiments using PTC cell lines (HTori-3 and TPC-1). Cells were divided into three groups: control, MAP17 inhibitor negative control (NC), and MAP17 inhibitor treatment.
Discov Med
January 2025
Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA.
Background: Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2024
Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.
Sodium-glucose cotransporter 2 (SGLT2) is imporant in glucose reabsorption. SGLT2 inhibitors suppress renal glucose reabsorption, therefore reducing blood glucose levels in patients with type 2 diabetes. We and others have developed several SGLT2 inhibitors starting from phlorizin, a natural product.
View Article and Find Full Text PDFClin Sci (Lond)
January 2023
Nephrology and Transplantation Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice.
View Article and Find Full Text PDFNat Commun
October 2022
State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!