Analytical assessment of metagenomic workflows for pathogen detection with NIST RM 8376 and two sample matrices.

Microbiol Spectr

Complex Microbial Systems Group, Biosystems and Biomaterials Division, Materials Measurements Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

Published: March 2025

We assessed the analytical performance of metagenomic workflows using NIST Reference Material (RM) 8376 DNA from bacterial pathogens spiked into two simulated clinical samples: cerebrospinal fluid (CSF) and stool. Sequencing and taxonomic classification were used to generate signals for each sample and taxa of interest and to estimate the limit of detection (LOD), the linearity of response, and linear dynamic range. We found that the LODs for taxa spiked into CSF ranged from approximately 100 to 300 copy/mL, with a linearity of 0.96 to 0.99. For stool, the LODs ranged from 10 to 221 kcopy/mL, with a linearity of 0.99 to 1.01. Furthermore, discriminating different strains proved to be workflow-dependent as only one classifier:database combination of the three tested showed the ability to differentiate the two pathogenic and commensal strains. Surprisingly, when we compared the linear response of the same taxa in the two different sample types, we found those functions to be the same, despite large differences in LODs. This suggests that the "agnostic diagnostic" theory for metagenomics (i.e., any organism can be identified because DNA is the measurand) may apply to different target organisms and different sample types. Because we are using RMs, we were able to generate quantitative analytical performance metrics for each workflow and sample set, enabling relatively rapid workflow screening before employing clinical samples. This makes these RMs a useful tool that will generate data needed to support the translation of metagenomics into regulated use.IMPORTANCEAssessing the analytical performance of metagenomic workflows, especially when developing clinical diagnostics, is foundational for ensuring that the measurements underlying a diagnosis are supported by rigorous characterization. To facilitate the translation of metagenomics into clinical practice, workflows must be tested using control samples designed to probe the analytical limitations (e.g., limit of detection). Spike-ins allow developers to generate fit-for-purpose control samples for initial workflow assessments and inform decisions about further development. However, clinical sample types include a wide range of compositions and concentrations, each presenting different detection challenges. In this work, we demonstrate how spike-ins elucidate workflow performance in two highly dissimilar sample types (stool and CSF), and we provide evidence that detection of individual organisms is unaffected by background sample composition, making detection sample-agnostic within a workflow. These demonstrations and performance insights will facilitate the translation of the technology to the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1128/spectrum.02806-24DOI Listing

Publication Analysis

Top Keywords

sample types
16
metagenomic workflows
12
analytical performance
12
sample
8
performance metagenomic
8
clinical samples
8
limit detection
8
translation metagenomics
8
facilitate translation
8
control samples
8

Similar Publications

Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.

View Article and Find Full Text PDF

Background: Rapid diagnostic tests (RDTs) are vital for malaria diagnosis, especially in resource-limited areas. RDTs targeting histidine-rich protein 2 (PfHRP2) and its structural homologue PfHRP3 are commonly used for detecting Plasmodium falciparum. However, genetic deletions in these proteins can affect test accuracy.

View Article and Find Full Text PDF

Currently, the laser-induced fluorescence method faces challenges in reliably determining the types and mass ratios of marine microplastics due to overlapped fluorescence spectra of different microplastics. To address this issue, this paper proposes a double-angling-subspace (DAS) method to differentiate the overlapped fluorescence spectra. The key idea is to span subspaces with vectors converted by known fluorescence spectra, followed by calculating the angle between vectors and subspaces.

View Article and Find Full Text PDF

Introduction: Nus-dependent Mexican phages (mEp) were previously isolated from clinical samples of human feces. Approximately 50% corresponded to non-lambdoid temperate phages integrating a single immunity group, namely immunity I (mEp), and these were as prevalent as the lambdoid phages identified in such collection.

Methods: In this work, we present the structural and functional characterization of six representative mEp phages (mEp010, mEp013, mEp021, mEp044, mEp515, and mEp554).

View Article and Find Full Text PDF

Effects of copper and copper oxide nanoparticles on cyanobacterium : an experimental study.

Front Microbiol

February 2025

Ficobiotechnology Laboratory, Institute of Microbiology and Biotechnology, Technical University of Moldova, Chisinau, Moldova.

Introduction: Copper nanoparticles (CuNPs) and copper oxide nanoparticles (CuONPs) are increasingly explored for their biological interactions with various organisms, including cyanobacteria, due to their unique properties and potential applications. This study investigates the effects of CuNPs and CuONPs on the cyanobacterium (Roth) Born et Flah CNMN-CB-03, focusing on biomass accumulation, biochemical content, pigment composition, and microscopic structural changes.

Methods: cultures were exposed to CuNPs and CuONPs at concentrations ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!