Grapes, as one of the world's oldest economic crops, are severely affected by grape powdery mildew, causing significant economic losses. As a phytoalexin against powdery mildew, stilbenes and their key synthetic gene, stilbene synthase (STS), are highly sought after by researchers. In our previous research, a new gene, VqNSTS2, was identified from Vitis quinquangularis accession 'Danfeng-2' through transcriptomic analysis. However, the function and molecular mechanism of VqNSTS2 gene remain unknown. Here, by characterization and transient overexpression of VqNSTS2, we demonstrated that its expression product, stilbenes, can be detected in the model plant tobacco, which does not inherently contain STSs. After artificially inoculating transgenic Arabidopsis lines overexpressing VqNSTS2 with Erysiphe necator, it was found that VqNSTS2 actively moved to the pathogen's haustorium after responding to the pathogen, recognized and enveloped the haustorium, blocking the pathogen's infection and invasion and exhibited disease resistance. Furthermore, Agrobacterium-mediated stable overexpression of VqNSTS2 promoted stilbene accumulation and enhanced resistance of the V. vinifera susceptible cultivar 'Thompson Seedless' to E. necator. Additionally, through screening and identification, a transcription factor, VqERF062, was found to directly bind to the DRE and RAA motifs on ProVqNSTS2, positively regulating VqNSTS2 expression. Moreover, VqERF062 directly interacted with VqERF1B to promote the transcription of VqNSTS2 in addition to forming a homodimer with itself. Taken together, our findings reveal that the VqERF1B-VqERF062- module is required for grape resistance to E. necator and providing insights into the regulatory mechanism of stilbenes biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pbi.70041 | DOI Listing |
Small
March 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Agrochemicals play a pivotal role in the management of pests and diseases and the way agrochemicals are utilized exerts significant impacts on the environment. Ensuring rational application and improving utilization rates of agrochemicals are major demands in developing green delivery systems. Herein, a model of nucleic acid-peptide coacervate (NPC) for agrochemical delivery is presented, which is formed by mixing negatively charged single-stranded DNAs with positively charged poly-L-lysine.
View Article and Find Full Text PDFPlant Biotechnol J
March 2025
College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China.
Grapes, as one of the world's oldest economic crops, are severely affected by grape powdery mildew, causing significant economic losses. As a phytoalexin against powdery mildew, stilbenes and their key synthetic gene, stilbene synthase (STS), are highly sought after by researchers. In our previous research, a new gene, VqNSTS2, was identified from Vitis quinquangularis accession 'Danfeng-2' through transcriptomic analysis.
View Article and Find Full Text PDFArch Virol
March 2025
Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
Leptosphaeria biglobosa is a phytopathogenic ascomycete of Brassica napus that causes phoma stem canker/blackleg. A new double-stranded RNA (dsRNA) mycovirus from this fungus has been fully characterized. The virus genome has five dsRNA segments, ranging in length from 1,180 bp to 2,402 bp.
View Article and Find Full Text PDFMol Hortic
March 2025
College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, poses a significant threat to apple production. Salicylic acid (SA) signaling plays a crucial role in enhancing resistance to biotrophic pathogens. While PR1, a defense protein induced by SA, is essential for plant immunity, its excessive accumulation can be detrimental.
View Article and Find Full Text PDFPlant Cell
March 2025
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720.
Powdery mildews are obligate biotrophic fungi that manipulate plant metabolism to supply lipids to the fungus, particularly during fungal asexual reproduction when lipid demand is high. We found levels of leaf storage lipids (triacylglycerols, TAGs) are 3.5-fold higher in whole Arabidopsis (Arabidopsis thaliana) leaves with a 15-fold increase in storage lipids at the infection site during fungal asexual reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!