Different natural and anthropogenic drivers impact the groundwater in the catchment area of the southern Baltic Sea, north-eastern Germany. To understand the sources and fate of dissolved sulphate, carbonate, and nitrate on a regional scale, in the present study, the hydrogeochemical and multi-stable isotope (H, C, O, S) composition of groundwater samples from up to more than 300 sites (depths from near-surface down to 291 m) was studied. To investigate the element sources and the water-rock-microbe interaction processes that took place along the groundwater flow path, a mass balance approach is combined with physico-chemical modelling. Microbial oxidation of pyrite using nitrate as electron acceptor and a superimposition by dissimilatory sulphate reduction at depth is shown in a drilled vertical profile at one site. This trend frames the behaviour of sulphate at many investigated groundwater wells. Dissolved inorganic carbon (DIC) in the groundwater was found to be controlled by the uptake of biogenic carbon dioxide, the dissolution of carbonate minerals, the oxidation of DOC and, at a few sites, the formation and/or oxidation of biogenic methane. Enhanced groundwater DIC loads may potentially increase future CO degassing to the atmosphere upon release of groundwaters to the surface. These results form a comprehensive base for understanding the present situation and for future investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10256016.2025.2461474DOI Listing

Publication Analysis

Top Keywords

sources fate
8
fate dissolved
8
dissolved sulphate
8
sulphate carbonate
8
carbonate nitrate
8
north-eastern germany
8
groundwater
7
sulphate
4
nitrate groundwater
4
groundwater temperate
4

Similar Publications

Humic acid-bound Pb (HA-Pb), as one of the representative solid-associated Pb species, plays important roles in Pb mobility and toxicity in aqueous environments. Stable Pb-phosphate minerals formation mediated by phosphate solubilizing bacteria (PSB) is a promising approach to immobilizing Pb in contaminated waters. However, the underlying processes and kinetics of Pb-phosphate biomineralization from labile HA-Pb species remain unclear.

View Article and Find Full Text PDF

Road traffic is a major source of atmospheric pollution, especially in urban areas, contributing significantly to particulate matter (PM) emissions. While electric vehicles (EVs) help reduce exhaust emissions, they do not substantially address non-exhaust emissions (NEEs), such as brake wear dust (BWD), which remains a significant source of PM, particularly in urban environments. This study investigates at a preliminary level the environmental fate of BWD, studying at the laboratory scale its mobility and behaviour in unsaturated and saturated porous media, which simulate subsoil and aquifer conditions.

View Article and Find Full Text PDF

During homeostasis and regeneration, satellite cells, the resident stem cells of skeletal muscle, have distinct metabolic requirements for fate transitions between quiescence, proliferation and differentiation. However, the contribution of distinct energy sources to satellite cell metabolism and function remains largely unexplored. Here, we uncover a role of mitochondrial fatty acid oxidation (FAO) in satellite cell integrity and function.

View Article and Find Full Text PDF

Sewage sludges applied to agricultural soils are sources of microplastic pollution, however, little is known about the accumulation, persistence, or degradation of these microplastics over time. This is the first study to provide long-term, high temporal resolution quantitative evidence of microplastics in agricultural soils following sewage sludge application. The abundance and degradation of microplastics was assessed in soils sampled biennially from an experimental field over a 25-year period managed under an improved grassland regime following the application of five different sewage sludges.

View Article and Find Full Text PDF

Different natural and anthropogenic drivers impact the groundwater in the catchment area of the southern Baltic Sea, north-eastern Germany. To understand the sources and fate of dissolved sulphate, carbonate, and nitrate on a regional scale, in the present study, the hydrogeochemical and multi-stable isotope (H, C, O, S) composition of groundwater samples from up to more than 300 sites (depths from near-surface down to 291 m) was studied. To investigate the element sources and the water-rock-microbe interaction processes that took place along the groundwater flow path, a mass balance approach is combined with physico-chemical modelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!