Action-based two-dimensional infrared spectroscopy on the horizon.

J Chem Phys

Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, Pennsylvania 18015, USA.

Published: March 2025

Time domain two-dimensional infrared (2DIR) spectroscopy extends the capabilities of traditional infrared spectroscopy by revealing information on vibrational modes' anharmonicities, couplings, and energy transfer processes, making it a powerful tool for studying fast dynamic processes. Recent advancements in mid-IR laser technology and detection methods have significantly improved the resolution and acquisition rate of 2DIR spectroscopy. Despite these exciting developments, 2DIR spectroscopy remains limited by Abbe's diffraction limit, which restricts its spatial resolution. Aimed to address this challenge, the integration of action-based detection methods, notably the atomic force microscope (AFM)-based photothermal detection, offers a promising solution. AFM-2DIR spectroscopy combines the high spatial resolution of AFM with the richness of molecular insights of 2DIR, allowing nanoscale analysis of heterogeneous samples. This new type of technique would open avenues for investigating complex molecular systems, surface phenomena, and nanostructures with unprecedented spatial precision, offering potential for research in chemistry, materials science, bio-macromolecules, and nanotechnology for the chemical physics community.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0244011DOI Listing

Publication Analysis

Top Keywords

2dir spectroscopy
12
two-dimensional infrared
8
infrared spectroscopy
8
detection methods
8
spatial resolution
8
spectroscopy
6
action-based two-dimensional
4
spectroscopy horizon
4
horizon time
4
time domain
4

Similar Publications

Action-based two-dimensional infrared spectroscopy on the horizon.

J Chem Phys

March 2025

Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, Pennsylvania 18015, USA.

Time domain two-dimensional infrared (2DIR) spectroscopy extends the capabilities of traditional infrared spectroscopy by revealing information on vibrational modes' anharmonicities, couplings, and energy transfer processes, making it a powerful tool for studying fast dynamic processes. Recent advancements in mid-IR laser technology and detection methods have significantly improved the resolution and acquisition rate of 2DIR spectroscopy. Despite these exciting developments, 2DIR spectroscopy remains limited by Abbe's diffraction limit, which restricts its spatial resolution.

View Article and Find Full Text PDF

AI protocol for retrieving protein dynamic structures from two-dimensional infrared spectra.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China.

Understanding the dynamic evolution of protein structures is crucial for uncovering their biological functions. Yet, real-time prediction of these dynamic structures remains a significant challenge. Two-dimensional infrared (2DIR) spectroscopy is a powerful tool for analyzing protein dynamics.

View Article and Find Full Text PDF

This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.

View Article and Find Full Text PDF

Distinct Fermi Resonance Patterns of Weak Coupling in 2D-IR Spectra of 5-Cyanoindole Revealed by Isotope Labeling.

J Phys Chem B

January 2025

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!