Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c00408 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!