This study investigates the mechanisms of CO adsorption and separation in COF (covalent organic framework) membranes modified with ionic liquids and DESs (deep eutectic solvents) under varying temperature and humidity conditions by molecular dynamics simulations. The results indicate that higher temperatures enhance the CO permeability, while an appropriate amount of water improves separation selectivity. The effects of DES and PEGIL (PEG-modified ionic liquid) solvents differ due to their distinct molecular structures. DES molecules are more uniform with shorter and less curved chains, resulting in denser membranes. In contrast, PEGIL molecules, characterized by longer and more curved chains, generate additional free volume. However, due to the strong interactions among PEGIL, COF, and CO gas molecules, more adsorption space is provided for gas molecules, resulting in decreased gas permeability. Humidity plays a dual role. In DES@COF membranes, small amounts of water selectively enhance the transport of CO while inhibiting N transport; in PEGIL@COF membranes, excessive water causes phase separation, which impedes gas transport. These findings offer practical insights for optimizing COF-based composite membranes for efficient CO separation in industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c05022 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
School of Chemistry and Environment, Changchun University of Science and Technology, Changchun 130022, China.
Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.
View Article and Find Full Text PDFAdv Mater
March 2025
Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.
View Article and Find Full Text PDFChem Rec
March 2025
College of Chemistry & Chemical Engineering, Qingdao University, Qingdao, 266071, China.
Biomolecule-engineered metal-organic frameworks (Bio-MOFs) are designed by incorporating biomolecules into or onto MOFs through covalent and non-covalent interactions. These composite frameworks exhibit unique catalytic and biological activities, making them highly suitable for various biocatalytic applications. In this review, we highlight recent advances in the material design, bioengineering methods, structural and functional regulation techniques, and biocatalytic applications of Bio-MOFs.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
A covalent organic framework TPB-DMTP was physically coated onto the gully-like surface of stainless-steel fiber. The fabricated TPB-DMTP-coated stainless-steel fiber was used to extract five phthalic acid esters (PAEs) prior to the GC-FID separation and determination in bottled tea beverages. The developed SPME-GC-FID method gave limits of detection (S/N = 3) from 0.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
In this paper, a novel robust TFPA-TTA-COF coating with nano pores was grafted to the gully-like surface of stainless steel fibers (GS-SSF). The GS-SSF were prepared using a two-step electrochemical etching method, and the covalent organic framework (COF) TFPA-TTA-COF coating was chemically bonded to the gully-like surface via in situ growth. The prepared metal fibers were applied as the headspace solid-phase microextraction (HS-SPME) fibers and combined with gas chromatography (GC) to develop a detection method for phenolic compounds (PCs) in water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!