Parkinson's disease (PD) is a complex, progressive neurodegenerative disorder with high heterogeneity, making early diagnosis difficult. Early detection and intervention are crucial for slowing PD progression. Understanding PD's diverse pathways and mechanisms is key to advancing knowledge. Recent advances in noninvasive imaging and multi-omics technologies have provided valuable insights into PD's underlying causes and biological processes. However, integrating these diverse data sources remains challenging, especially when deriving meaningful low-level features that can serve as diagnostic indicators. This study developed and validated a novel integrative, multimodal predictive model for detecting PD based on features derived from multimodal data, including hematological information, proteomics, RNA sequencing, metabolomics, and dopamine transporter scan imaging, sourced from the Parkinson's Progression Markers Initiative. Several model architectures were investigated and evaluated, including support vector machine, eXtreme Gradient Boosting, fully connected neural networks with concatenation and joint modeling (FCNN_C and FCNN_JM), and a multimodal encoder-based model with multi-head cross-attention (MMT_CA). The MMT_CA model demonstrated superior predictive performance, achieving a balanced classification accuracy of 97.7%, thus highlighting its ability to capture and leverage cross-modality inter-dependencies to aid predictive analytics. Furthermore, feature importance analysis using SHapley Additive exPlanations not only identified crucial diagnostic biomarkers to inform the predictive models in this study but also holds potential for future research aimed at integrated functional analyses of PD from a multi-omics perspective, ultimately revealing targets required for precision medicine approaches to aid treatment of PD aimed at slowing down its progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891661 | PMC |
http://dx.doi.org/10.1093/bib/bbaf088 | DOI Listing |
J Med Chem
March 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.
View Article and Find Full Text PDFNano Lett
March 2025
College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.
View Article and Find Full Text PDFMol Inform
March 2025
Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam.
Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.
View Article and Find Full Text PDFElife
March 2025
Machine Learning Core, National Institute of Mental Health, Bethesda, United States.
Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense signals into summary measures, and discard trial-level information by averaging . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China.
Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.
Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!