Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections. The topical application model achieved temporary denervation lasting 1 week without causing vascular damage, while the subcutaneous injection model provided sustained denervation for up to 4 weeks with minimal inflammation and no significant changes to vascular architecture. To investigate the effects of denervation in an ischemic context, these models were combined with a hindlimb ischemia model. Ischemia induced persistent denervation in both 6-OHDA-treated and control limbs, with limited sympathetic nerve regeneration observed over 4 weeks. Despite persistent denervation, microvascular density and perfusion recovery in ischemic muscles were comparable between denervated and control groups. This suggests that ischemia governs vascular regeneration independently of sympathetic input. These results demonstrate that localized 6-OHDA administration provides a versatile tool for achieving controlled sympathetic denervation in peripheral arteries. These models provide a novel platform for studying vascular regeneration and reinnervation under both normal and ischemic conditions, offering novel insights into the interactions between neural regulation and vascular repair processes. This work lays the foundation for future research into neural-vascular crosstalk and new possibilities for developing regenerative therapies targeting the autonomic regulation of vascular health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tec.2025.0014 | DOI Listing |
Cells
March 2025
Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU Munich, 80336 Munich, Germany.
The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted NPIs. Dispersed NPIs and human BOECs were reaggregated on microwell cell culture plates and tested for their anti-apoptotic and pro-angiogenic capacity by qRT-PCR and immunohistochemistry.
View Article and Find Full Text PDFCells
February 2025
Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
The vascular system is primarily responsible for orchestrating the underlying healing processes to achieve tissue regeneration, thus the promotion of angiogenic events could be a useful strategy to repair injured tissues. Among several approaches to stimulate tissue regeneration, non-invasive devices are currently widely diffused. Complex Magnetic Fields (CMFs) are innovative pulsed multifrequency electromagnetic fields used for their promising results in clinical applications, such as diabetic foot treatment or edema resorption.
View Article and Find Full Text PDFCell Transplant
March 2025
Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy.
Diabetic foot ulcers (DFUs) are associated with a high risk of amputations and a 50% 5-year survival rate due at least in part to the limited angiogenic and wound healing capacity of patients with diabetes. Cell therapy via intramuscular injection of peripheral blood mononuclear cells showed encouraging but limited results. Such limitations may arise from the limited ability of therapeutic cells to adhere to the target tissue.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Diabetic wounds often exhibit delayed healing due to compromised vascular function and intensified inflammation. In this study, we overexpressed Thymosin β4 (Tβ4) in Adipose-Derived Stem Cells (ADSCs) to produce Exosomes (Exos) rich in Tβ4. We then utilized a dual photopolymerizable hydrogel composed of Hyaluronic Acid Methacryloyl (HAMA) and Poly-L-lysine Methacryloyl (PLMA) for the sustained release of Tβ4-Exos on diabetic wounds.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
Diabetic infected bone defect remains a great challenge in clinical practice, with delayed healing characterized by bacterial infection and cellular disfunction caused by oxidative stress. Hence, a novel self-healing multifunctional Ag@PEG-4OI/EXO hydrogel is introduced for improving healing of diabetic infected bone defect. 4-octyl itaconate, a derivative of the metabolite itaconate, has been proved that which performs antioxidant and mitochondria-protected properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!