Background: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance.
Aim: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model.
Methods: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader.
Outcomes: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum.
Results: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy.
Strengths And Limitations: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery.
Clinical Translation: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur.
Conclusions: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jsxmed/qdaf001 | DOI Listing |
PLoS One
March 2025
Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy.
Reptiles may act as reservoirs or spreaders of potential pathogenic microorganisms including Candida yeasts. While the epidemiology of yeast species has been thoroughly studied, the virulence profile of isolated species is not well investigated. Therefore, this study aimed to assess the haemolytic, phospholipase, lipase activities and biofilm formation of yeasts isolated from the cloacal swabs of venomous snakes from Marrakech, Morocco (Group I, n = 40) and from non-venomous snakes from Cocullo, Italy (Group II, n = 32).
View Article and Find Full Text PDFChemistry
March 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, Department of Molecular Pharmacology, 555 Zuchiongzhi Road, 201203, Shanghai, CHINA.
Sortase A (SrtA), a cysteine transpeptidase critical for surface protein anchoring in Gram-positive pathogens, represents an attractive antivirulence target. While covalent SrtA inhibitors show therapeutic potential, existing compounds lack species selectivity. Through structure-guided design, we developed T10, a covalent inhibitor selectively targeting Streptococcus pyogenes SrtA (SpSrtA) over Staphylococcus aureus SrtA (SaSrtA).
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
The rise of multidrug-resistant (MDR) bacteria in food products poses a significant threat to public health, necessitating innovative and sustainable antimicrobial solutions. This study investigates the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using extracts to evaluate their antibacterial and antibiofilm activities against MDR strains isolated from sold fish samples. The obtained results show that the contamination with reached 54.
View Article and Find Full Text PDFMicrobiol Spectr
March 2025
Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
Unlabelled: , previously misidentified as , was first described as a new species in 2020. In this study, we aimed to describe the clinical relevance of by combining clinical data, antibiotic susceptibility profiles, and biofilm formation in isolates obtained from hospitalized and non-hospitalized patients. We established a collection of 129 .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!