Thyroid hormone (TH) is crucial for proper neurodevelopment. Insufficient TH concentrations in early life are associated with lower IQ and delayed motor development in children. Intracellular levels of TH are modulated via the transmembrane transport of TH and intracellular deiodination, and can mediate gene transcription via binding to the nuclear TH receptor. Chemical exposure can disrupt TH homeostasis via modes of action targeting intracellular mechanisms, thereby potentially influencing TH transport, deiodination or signaling. Understanding the cause and effect relationships of chemical hazards interfering with TH homeostasis in the developing brain is necessary to identify how chemicals might disturb brain development and result in neurodevelopmental disorders. Adverse Outcome Pathways (AOPs) can provide a template for mapping these relationships, and so far multiple AOPs have been developed for TH homeostasis and adverse effects on cognition. The present review aims to expand current AOP networks by (1) summarizing the most important factors in the regulation of brain development under influence of TH, (2) integrating human-based mechanistic information of biological pathways which can be disturbed by TH disrupting chemicals, and (3) by incorporating brain-specific TH-mediated physiology, including barriers and cell specificity, as well as clinical knowledge. TH-specific pathways in the fetal brain are highlighted and supported by distinguishing cell type specific Molecular Initiating Events (MIEs) and downstream Key Events (KEs) for astrocytes, neurons and oligodendrocytes. Two main pathways leading to adverse outcomes (AOs) in the areas of 'cognition' and 'motor function' are decreased myelination due to oligodendrocyte dysfunction, and decreased synaptogenesis and network formation via the neurons. The proposed AOP framework can form a basis for selecting developmental neurotoxic and test systems for an innovative human-focused hazard testing strategy and risk assessment of chemical exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408444.2025.2461076DOI Listing

Publication Analysis

Top Keywords

thyroid hormone
8
adverse outcome
8
chemical exposure
8
brain development
8
brain
5
mechanisms developmental
4
developmental neurotoxicity
4
neurotoxicity mediated
4
mediated perturbed
4
perturbed thyroid
4

Similar Publications

A 9-year-old mixed breed cat with a history of recurrent ulcerated skin lesions was diagnosed with nocardiosis. Three months after initiating potentiated sulfonamide treatment, the cat developed goitrous hypothyroidism, characterized by palpable enlargement of both thyroid lobes, low serum concentrations of total thyroxine (T4) and free thyroxine (fT4), and high serum thyroid-stimulating hormone (TSH) concentration. Thyroid scintigraphy identified symmetrical enlargement of both thyroid lobes, with increased radionuclide (Tc-pertechnetate) uptake.

View Article and Find Full Text PDF

During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 () using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, there was an increase in the expression of UV opsin (short-wave-sensitive 1, ), while the expression of other cone opsins was significantly decreased. Further analysis of the retinal structure demonstrated that the knockout resulted in an increased lens thickness and a decreased thickness of the ganglion cell layer (GCL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in the retina.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a prevalent complication associated with diabetes in which podocyte dysfunction significantly contributes to the development and progression of the condition. Ring finger protein 183 (RNF183) is an ER-localized, transmembrane ring finger protein with classical E3 ligase activity. However, whether RNF183 is involved in glomerular podocyte dysfunction, which is the mechanism of action of DKD, is still poorly understood.

View Article and Find Full Text PDF

The thyroid is essential for the metabolic processes in the body, and its imbalance can cause acute and chronic health issues. Autoimmune thyroid disease includes both Hashimoto's thyroiditis (HT) and Graves' disease (GD). HT is the most common cause of hypothyroidism, while GD is the most common cause of hyperthyroidism.

View Article and Find Full Text PDF

Introduction: Proven risk factors for thyroid orbitopathy (TO) are thyroid dysfunction, smoking, and high levels of thyrotropin receptor antibodies (TRAb), and the role of insulin-like growth factor 1 (IGF-1), the receptor for IGF-1 (IGF-1R), and antibodies to the receptor for IGF-1 (IGF-1RAb) are also debated. IGF-1R is overexpressed in fibroblasts and orbital lymphocytes in TO patients. It forms a functional complex and mediates signal transduction through thyroid stimulating hormone receptor (TSHR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!