Immobilization and interfacial activation of lipase at liquid and solid interfaces.

Soft Matter

University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, 28359 Bremen, Germany.

Published: March 2025

This study investigates the adsorption behaviour of lipase at silica/water and oil/water interfaces by means of molecular dynamics simulations. The findings reveal distinct adsorption orientations and structural differences that can be related to different enzymatic activities and selectivities. At the silica/water interface, lipase adsorbs with the LID region facing the solvent, in a configuration that is not fully open, but still grants access to its catalytic triad, as shown by tunnel calculations. These also reveal the presence of two ester-exit tunnels, suggesting a high catalytic turnover capability of the adsorbed enzyme. Docking simulations predict binding of triacylglyceride substrates with marked selectivity regarding the length of the hydrophobic chains and the substrate chirality. At the oil/water interface, lipase adsorbs the LID region with widely open ingress tunnels, facilitating direct substrate extraction from the interface. The two opposite adsorption orientations allow favorable interactions of silica-immobilized lipase with oil droplets that cause no appreciable change in the conformation, activity, or selectivity. These results provide a molecular-scale rationalization of the lipid hydrolysis mechanisms that support the deployment of lipase immobilized in ceramic membranes for lipolytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01218fDOI Listing

Publication Analysis

Top Keywords

adsorption orientations
8
interface lipase
8
lipase adsorbs
8
adsorbs lid
8
lid region
8
lipase
6
immobilization interfacial
4
interfacial activation
4
activation lipase
4
lipase liquid
4

Similar Publications

Immobilization and interfacial activation of lipase at liquid and solid interfaces.

Soft Matter

March 2025

University of Bremen, Hybrid Materials Interfaces Group, Faculty of Production Engineering, 28359 Bremen, Germany.

This study investigates the adsorption behaviour of lipase at silica/water and oil/water interfaces by means of molecular dynamics simulations. The findings reveal distinct adsorption orientations and structural differences that can be related to different enzymatic activities and selectivities. At the silica/water interface, lipase adsorbs with the LID region facing the solvent, in a configuration that is not fully open, but still grants access to its catalytic triad, as shown by tunnel calculations.

View Article and Find Full Text PDF

The gas sensitivity of field-effect structures with 2D-MoS channels selectively grown between Mo electrodes using the Mo-CVD method was investigated by measuring the effect of molecular adsorption from air on the device source-drain current ( ). The channels were composed of interconnected atomically thin MoS grains, with their density and average thickness varied by choosing two different distances (15 and 20 μm) between the Mo contacts. A high response to the tested stimuli, including molecule adsorption, illumination and gate voltage changes, was observed.

View Article and Find Full Text PDF

A novel one-step immunoassay using mesoporous core-shell Pd@Pt nanoparticles as an alternative to horseradish peroxidase for amantadine detection.

Talanta

March 2025

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China. Electronic address:

The inherent limitations of natural enzymes hinder their stable application under harsh conditions, highlighting the urgent need for a stable alternative signal tracer. Herein, core-shell palladium@platinum (Pd@Pt) nanoparticles (NPs) with mesoporous and dendritic nanostructures were synthesized using a modified ultrasound-assisted chemical reduction method, resulting in a 25 % improvement in relative activity compared to previously reported methods. The yielding nanoparticles exhibited enhanced peroxidase-like activity with specific activity of 54.

View Article and Find Full Text PDF

This study investigated the role of Al and As fate during the transformation process of ferrihydrite influenced by different pH values under oxic conditions. The results indicate that the Al doping greatly enhanced the transformation of ferrihydrite (Fh) to Al-substituted goethite at all acidic or alkaline pH values under oxic conditions by promoting the incongruent dissolution and reprecipitation reactions of Al-substituted ferrihydrite (AlFh). Under acidic conditions, the preferential dissolution of structural Fe (4.

View Article and Find Full Text PDF

Facet Dependent Pt Adsorption on Rutile TiO Surface for Efficient Photocatalytic VOCs Removal.

Small

March 2025

WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

Removing volatile organic compounds (VOCs) from the environment via photocatalytic reactions is highly effective for achieving clean air. While Pt deposition on TiO₂ surfaces is recognized as a viable catalytic method, understanding Pt interaction, dispersion, and facet optimization remain incomplete, leading to suboptimal performance and cost inefficiencies. This study investigates Pt adsorption on rutile TiO surfaces, focusing on the (101) and (110) facets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!