The hypoxic tumor microenvironment (TME), inadequate penetration depth of Vis/NIR light, and lack of sustaining reactive oxygen species (ROS) production capability of photosensitizers pose significant obstacles to the widespread clinic applications of photodynamic therapy (PDT). Herein, we developed a "persistent type I X-PDT" platform to simultaneously overcome these three limitations. Such a nanoplatform could generate efficient ROS (OH and O) under X-ray irradiation in both normoxic and hypoxic environments. The ROS production persists in tumor cells for more than 4 h, even after the X-ray source is removed. Notably, the persistent type I X-PDT does not increase the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in tumor cells both and . Moreover, to further enhance the radiotherapy efficacy in hypoxic conditions, a Pt (IV) prodrug was also introduced, which can be reduced to cisplatin selectively in tumor cells, functioning not only as a chemodrug but also as a radiosensitizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c00433 | DOI Listing |
J Biomater Appl
March 2025
Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.
View Article and Find Full Text PDFCancer Immunol Res
March 2025
University of Minnesota, Minneapolis, MN, United States.
Agonistic anti-CD40 with anti-PD-1 can elicit objective responses in a small number of patients with pancreatic ductal adenocarcinoma (PDA). Better understanding of their individual effects on the PDA tumor microenvironment will help inform new strategies to further improve outcomes. Herein, we map tumor-specific CD8+ T-cell differentiation following agonistic anti-CD40 and/or anti-PDL1 in PDA.
View Article and Find Full Text PDFJAMA Dermatol
March 2025
Service de Dermatologie et Allergologie, Faculté de Médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.
Importance: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease caused by UBA1 somatic variants in hematopoietic progenitor cells, mostly involving adult men. It is associated with inflammatory-related symptoms, frequently involving the skin and hematological disorders. Recently described myelodysplasia cutis (MDS-cutis) is a cutaneous manifestation of myelodysplasia in which clonal myelodysplastic cells infiltrate the skin.
View Article and Find Full Text PDFBackground: Neuroendocrine carcinomas (NECs) are rare tumors from hormone-secreting neuroendocrine cells, often within the gastrointestinal tract. The authors report what is, to their best knowledge, the first case of a small intestine NEC metastasizing to the temporomandibular joint (TMJ).
Case Description: A 60-year-old man came to the oral medicine, oncology, and orofacial pain clinic with a chief concern of left-sided jaw pain.
J Allergy Clin Immunol
March 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn. Electronic address:
Background: The few reported patients with pathogenic IRF8 variants have manifested 2 distinct phenotypes: (1) an autosomal recessive severe immunodeficiency with significant neutrophilia and absence of or significant decrease in monocytes and dendritic cells and (2) a dominant-negative form with only a decrease in conventional type 2 dendritic cells (cDC2s) and susceptibility to mycobacterial disease.
Objectives: Genetic testing of a child with persistent EBV viremia identified a novel IRF8 variant: c.1279dupT (p.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!