In order to further investigate the mechanism of action of rituximab in humans and its biotransformation, it is essential to obtain high purity rituximab while maintaining its structural and functional integrity. In this study, we proposed and fabricated a small-molecule 4-vinylpyridine-modified high-density membrane material (P4VP@M) using the surface-initiated atom transfer radical polymerization (SI-ATRP) method. This approach can overcome the limitations of conventional enrichment materials, such as long incubation time and low adsorption capacity. P4VP@M incorporates high-density HEMA polymer brushes to prevent non-specific protein adsorption and 4-vinylpyridine polymer brushes for high-performance rituximab enrichment under mild conditions. In addition, P4VP@M has high permeability, hydrophilicity and mechanical strength. Compared to previous methods, this novel material showed excellent rituximab binding capacity (100.3 mg g), shorter processing time (only 15 min), and lower cost (only $2). Notably, P4VP@M was able to purify rituximab rapidly and efficiently from the mixture samples and exhibited good selectivity, recovery (>92.6%) and purity (>94.8%). Thus, this proposed purification strategy using P4VP@M has great potential in enriching target proteins from complex samples, as well as contributing to the in-depth study of their biological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay02100b | DOI Listing |
Biomaterials
March 2025
Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06510, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA. Electronic address:
When exposed to the biological environment, nanoparticles (NPs) form a protein corona that influences delivery profile. We present a study of protein corona formation and NP biodistribution in amniotic fluid (AF) for poly(lactic-co-glycolic acid) (PLGA) and poly(lactic-acid) (PLA) NPs, with and without polyethylene glycol (PEG), as well as poly(amine-co-ester)-PEG (PACE-PEG) NPs. The presence of surface PEG and polyvinyl alcohol (PVA) were characterized to investigate surfactant role in determining protein corona formation.
View Article and Find Full Text PDFAnal Methods
March 2025
Emergency Department, Ganzhou People's Hospital, Ganzhou, China.
In order to further investigate the mechanism of action of rituximab in humans and its biotransformation, it is essential to obtain high purity rituximab while maintaining its structural and functional integrity. In this study, we proposed and fabricated a small-molecule 4-vinylpyridine-modified high-density membrane material (P4VP@M) using the surface-initiated atom transfer radical polymerization (SI-ATRP) method. This approach can overcome the limitations of conventional enrichment materials, such as long incubation time and low adsorption capacity.
View Article and Find Full Text PDFBiomacromolecules
March 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
Mimicked by the structure of dimethyl sulfoxide propionate (DMSP), a novel zwitterion monomer of -methylacryloyl -methyl l-cysteine methyl sulfonium salt (NMASMCMS) was synthesized and characterized for the first time through three steps using l-cysteine as a starting material. Poly(NMASMCMS) brushes were constructed on PET sheets via surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The physical and chemical structures were characterized by water contact angle (WCA), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).
View Article and Find Full Text PDFACS Macro Lett
March 2025
Chemistry Department, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
Brush particles, hybrid materials consisting of polymer chains tethered to particle surfaces, offer tunable properties that make them promising candidates for advanced functional materials. This study investigated the role of chain dispersity in the viscoelastic self-healing of poly (methyl acrylate) (PMA)-based brush particle solids. Increasing the molecular weight dispersity of grafted chains significantly enhanced both strain-to-fracture and toughness of brush particle solids, while the elastic modulus and glass transition temperature were independent of chain dispersity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Materials, ETH Zürich, Zürich 8093, Switzerland.
Contacts between particles in dense, sheared suspensions are believed to underpin much of their rheology. Roughness and adhesion are known to constrain the relative motion of particles, and thus globally affect the shear response, but an experimental description of how they microscopically influence the transmission of forces and relative displacements within contacts is lacking. Here, we show that an innovative colloidal-probe atomic force microscopy technique allows the simultaneous measurement of normal and tangential forces exchanged between tailored surfaces and microparticles while tracking their relative sliding and rolling, unlocking the direct measurement of coefficients of rolling friction, as well as of sliding friction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!