Imaging speed is critical for photoacoustic microscopy as it affects the capability to capture dynamic biological processes and support real-time clinical applications. Conventional approaches for increasing imaging speed typically involve high-repetition-rate lasers, which pose a risk of thermal damage to samples. Here, we propose a deep-learning-driven optical-scanning undersampling method for photoacoustic remote sensing (PARS) microscopy, accelerating imaging acquisition while maintaining a constant laser repetition rate and reducing laser dosage. We develop a hybrid Transformer-Convolutional Neural Network, HTC-GAN, to address the challenges of both nonuniform sampling and motion misalignment inherent in optical-scanning undersampling. A mouse ear vasculature image dataset is created through our customized galvanometer-scanned PARS system to train and validate HTC-GAN. The network successfully restores high-quality images from 1/2-undersampled and 1/4-undersampled data, closely approximating the ground truth images. A series of performance experiments demonstrate that HTC-GAN surpasses the basic misalignment compensation algorithm, and standalone CNN or Transformer networks in terms of perceptual quality and quantitative metrics. Moreover, three-dimensional imaging results validate the robustness and versatility of the proposed optical-scanning undersampling imaging method across multiscale scanning modes. Our method achieves a fourfold improvement in PARS imaging speed without hardware upgrades, offering an available solution for enhancing imaging speed in other optical-scanning microscopic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889609 | PMC |
http://dx.doi.org/10.1016/j.pacs.2025.100697 | DOI Listing |
Photoacoustics
April 2025
College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
Imaging speed is critical for photoacoustic microscopy as it affects the capability to capture dynamic biological processes and support real-time clinical applications. Conventional approaches for increasing imaging speed typically involve high-repetition-rate lasers, which pose a risk of thermal damage to samples. Here, we propose a deep-learning-driven optical-scanning undersampling method for photoacoustic remote sensing (PARS) microscopy, accelerating imaging acquisition while maintaining a constant laser repetition rate and reducing laser dosage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!