Background: Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate and complex pathophysiologic mechanisms. Pyroptosis, an inflammatory form of cell death triggered by certain inflammasomes, has a key role in a variety of inflammatory diseases, including SCI. However, it is unclear whether microRNAs (miRNAs), novel regulators in the SCI, are involved in SCI-induced pyroptosis.

Methods: Two GEO miRNA expression profiles (GSE158195 and GSE90452) were downloaded, and the differentially expressed miRNAs were analyzed by bioinformatics methods. An animal model and an cellular model of SCI were constructed in female C57BL/6 mice and BV-2 cells for studying the possible roles of FOXO3, miR-128-3p and NLRP3-mediated pyroptosis in SCI. Markers of ROS, cell pyroptosis and inflammation were measured by RT-qPCR, Western blotting, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent assays. Histopathological changes in spinal cord tissue were detected using hematoxylin and eosin and immunohistochemical. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate the motor function of mice in each group.

Results: Bioinformatics analysis of GSE158195 and GSE90452 datasets revealed a significant downregulation of miR-128-3p, a phenomenon that was consistently observed in the SCI mice model. Functionally, miR-128-3p upregulation improved functional behavioral recovery, relieved pathological injury, repressed oxidative stress, and alleviated pyroptosis and inflammation in the mouse SCI models. We also confirmed that Thioredoxin-interacting protein (TXNIP) was the target gene of miR-128-3p, and overexpression of TXNIP can effectively reverse the improvement of miR-128-3p in SCI cell model. Moreover, we found that transcription factor FOXO3 facilitated miR-128-3p expression, and its overexpression resulted in similar effects of miR-128-3p in the SCI cell model.

Conclusion: To the best of our knowledge, this is the first report demonstrating miR-128-3p improved secondary injury in SCI through the modulation of cell pyroptosis pathway. Our results suggest that FOXO3/miR-128-3p/TXNIP/NLRP3-mediated pyroptosis axis may be a potential therapeutic target for SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885150PMC
http://dx.doi.org/10.3389/fimmu.2025.1526721DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
sci
11
cord injury
8
injury sci
8
gse158195 gse90452
8
mir-128-3p
8
cell pyroptosis
8
pyroptosis inflammation
8
mir-128-3p sci
8
sci cell
8

Similar Publications

Background: Osteosarcoma, an aggressive bone malignancy predominantly affecting children and adolescents, presents significant therapeutic challenges with a 5-year survival rate below 30% in metastatic cases. T-cell exhaustion, characterized by the overexpression of immune checkpoint molecules, contributes to osteosarcoma progression and immune evasion. Although targeting these inhibitory pathways has shown potential in restoring T-cell activity, the molecular regulators of T-cell depletion in osteosarcoma are poorly understood.

View Article and Find Full Text PDF

Background: Varicella-zoster virus (VZV) central nervous system infection is typically observed in immunocompromised patients, and there is a lack of studies involving large samples of non-immunocompromised individuals. In this study, we retrospectively analyzed 108 non-immunocompromised patients diagnosed with VZV central nervous system infection.

Methods: This retrospective study was conducted in the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, China.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord.

View Article and Find Full Text PDF

Spinal cord injury (SCI) can cause permanent dysfunction proceeding from multifaceted neuroinflammatory processes that contribute to damage and repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme that negatively regulates axon growth, microglial functions, and wound healing, has emerged as a potential therapeutic target for central nervous system injuries and neuroinflammation. To test the hypothesis that FL2 knockdown increases acute neuroinflammation and improves recovery after SCI, we examined the effects of nanoparticle-encapsulated FL2 siRNA treatment after a moderate contusion SCI in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!