The gas sensitivity of field-effect structures with 2D-MoS channels selectively grown between Mo electrodes using the Mo-CVD method was investigated by measuring the effect of molecular adsorption from air on the device source-drain current ( ). The channels were composed of interconnected atomically thin MoS grains, with their density and average thickness varied by choosing two different distances (15 and 20 μm) between the Mo contacts. A high response to the tested stimuli, including molecule adsorption, illumination and gate voltage changes, was observed. A significant, persistent photoconduction was induced by positive charge accumulation on traps, most likely at grain boundaries and associated defects. increased under high vacuum, both in the dark and under illumination. The relative dark current response to the transition from air to high vacuum reached up to 1000% at the turn-on voltage. When monitored during the gradual change in air pressure, exhibited a non-monotonic function, sharply peaking at about 10 mbar, suggesting molecular adsorption on different defect sites and orientations of adsorbed HO molecules, which were capable of inducing electron accumulation or depletion. Despite the screening of disorder by extra electrons, the #20 μm sample remained more sensitive to air molecules on its surface. The high vacuum state was also investigated by annealing devices at temperatures up to 340 K in high vacuum, followed by measurements down to 100 K. This revealed thermally stimulated currents and activation energies of trapping electronic states assigned to sulfur vacancies (230 meV) and other shallow levels (85-120 meV), possibly due to natural impurities, grain boundaries or disorder defects. The results demonstrate the high sensitivity of these devices to molecular adsorption, making the technology promising for the easy fabrication of chemical sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886618 | PMC |
http://dx.doi.org/10.1039/d5na00138b | DOI Listing |
Small
March 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Deparment of Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!