Unlabelled: The Marburg virus (MARV), a member of the family Filoviridae, is a highly pathogenic virus causing severe hemorrhagic fever with extremely high mortality in humans and non-human primates. The MARV exhibits clinical and epidemiological features almost identical to those of the Ebola virus, no licensed vaccines or antiviral treatments have been developed yet for MARV. However, only a few treatments that remain uncertain of the disease are available to help bring a case for a new therapeutic approach. Considering the non-availability of any standard drug we have planned to identify potential inhibitors of VP24 (PDB ID: 4OR8) through a computational drug repurposing process. The workflow includes: identifying a druggable pocket on VP24, screening of FDA-approved antivirals via molecular docking, assessing the stability using molecular dynamics simulations, and estimating binding affinity through MM-PBSA calculations. After going through the analysis, the compound Bictegravir manifests as a hit compound which will undergo in vitro and in vivo validation to confirm its efficacy against MARV.

Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-025-00323-7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885215PMC
http://dx.doi.org/10.1007/s40203-025-00323-7DOI Listing

Publication Analysis

Top Keywords

marburg virus
8
computational drug
8
in-silico repurposing
4
repurposing antiviral
4
antiviral compounds
4
compounds marburg
4
virus
4
virus computational
4
drug discovery
4
discovery approach
4

Similar Publications

Unlabelled: The Marburg virus (MARV), a member of the family Filoviridae, is a highly pathogenic virus causing severe hemorrhagic fever with extremely high mortality in humans and non-human primates. The MARV exhibits clinical and epidemiological features almost identical to those of the Ebola virus, no licensed vaccines or antiviral treatments have been developed yet for MARV. However, only a few treatments that remain uncertain of the disease are available to help bring a case for a new therapeutic approach.

View Article and Find Full Text PDF

Unlabelled: Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus.

View Article and Find Full Text PDF

Using a phylogenetic framework to characterize natural selection, we investigate the hypothesis that zoonotic viruses require adaptation prior to zoonosis to sustain human-to-human transmission. Examining the zoonotic emergence of Ebola virus, Marburg virus, influenza A virus, SARS-CoV, and SARS-CoV-2, we find no evidence of a change in the intensity of natural selection immediately prior to a host switch, compared with typical selection within reservoir hosts. We conclude that extensive pre-zoonotic adaptation is not necessary for human-to-human transmission of zoonotic viruses.

View Article and Find Full Text PDF

The Ebola virus (EBOV) and Marburg virus (MARV) have been in circulation in Africa for several decades and are the cause of numerous outbreaks. There has been very little research on the role of domestic animals in their transmission to humans, but studies have only been conducted in dogs and pigs where relatively high levels of IgG was detected. These levels suggest that ruminants, which have not been studied, should also be investigated.

View Article and Find Full Text PDF

The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!