Background: Myocardial fibrosis and inflammation induce adverse cardiac remodeling post-myocardial infarction (MI). () is beneficial for diverse cardiovascular diseases. However, the therapeutic effect and molecular mechanism underlying cardiac remodeling are largely unclear.

Methods: A MI mouse model was constructed through permanent left anterior descending (LAD) coronary artery ligation. Transforming growth factor-β1 (TGF-β1) or lipopolysaccharide (LPS) was used for stimulating cardiac fibroblasts (CFs) or RAW264.7 macrophages to construct the collagen synthesis and inflammation model . The cardiac structure and function were detected through hematoxylin-eosin staining, Masson staining, and echocardiography, while myocardial fibrosis and inflammation markers were determined by Western-blot, immunohistochemistry, RT-PCR, and ELISA. Additionally, the Silent information regulator 1 (SIRT1)/nuclear factor-κB (NF-κB) mediated NOD like receptor 3 (NLRP3) inflammasome and TGF-β receptor I (TGFBR1) signaling pathways were also evaluated. A SIRT1 selective inhibitor (EX-527) was used for confirming the pharmacological mechanism of .

Results: , alleviated ventricular remodeling, enhanced heart function, and ameliorated collagen I, collagen III, IL-1β, and IL-18 levels dose-dependently. Moreover, significantly suppressed NLRP3-caspase1 inflammasome and TGFBR1/Smads signaling in MI mice. , significantly suppressed collagen and inflammation markers, NLRP3 inflammasome and TGFBR1/Smads signaling in TGF-β1-induced CFs or LPS-stimulated RAW264.7 cells. Mechanistically, suppressed NF-κB activity while promoting SIRT1 expression. SIRT1 suppression by EX-527 partially abolished the protective effects of in TGF-β1-induced CFs.

Conclusion: protects from adverse cardiac remodeling by attenuating myocardial fibrosis and inflammation post-MI through the regulation of SIRT1 and its downstream signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889384PMC
http://dx.doi.org/10.1016/j.jgr.2025.01.001DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
16
fibrosis inflammation
16
signaling pathways
12
cardiac remodeling
12
attenuating myocardial
8
adverse cardiac
8
inflammation markers
8
nlrp3 inflammasome
8
inflammasome tgfbr1/smads
8
tgfbr1/smads signaling
8

Similar Publications

Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction.

ACS Nano

March 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.

View Article and Find Full Text PDF

Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of () and often co-expressing (), localize to fibrotic niches in the heart and other organs.

View Article and Find Full Text PDF

Cardiac remodelling, a pathological process induced by various cardiovascular diseases, remains a significant challenge in clinical practice. Here, we investigate the potential of Danuglipron (PF-06882961, PF), a novel oral glucagon-like peptide-1 (GLP-1) receptor agonist, in alleviating pressure overload (PO)-induced cardiac hypertrophy and fibrosis. Using both in vivo and in vitro models, we demonstrate that PF treatment (1 mg/kg/day, orally for 8 weeks) significantly attenuates aortic banding-induced cardiac dysfunction and pathological remodelling in mice.

View Article and Find Full Text PDF

Background And Aims: Claudin 1 (Cldn1) is a tight junction protein primarily known for its role in epithelial and endothelial barrier function. However, the role of Cldn1 in coronary microvascular barrier remain unclear. The aim of this study is to investigate the biological effects of Cldn1 dysregulation on coronary vascular permeability, inflammation, fibrosis, and left ventricular function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!