Real-time monitoring of the work environment using ion-mobility spectrometry.

Environ Occup Health Pract

High Energy Accelerator Research Organization, KEK, Ibaraki, Japan.

Published: June 2024

Objectives: Ion-mobility spectrometry (IMS) is a promising system for on-site real-time monitoring of volatile organic compounds (VOCs). Calibration curves derived from shifts in nominal arrival-time spectra of chemical substances relative to those of water clusters enable quantitative analysis at high concentrations.

Methods: This study investigated the adaptability of IMS to real-time monitoring of VOCs in the work environment, using toluene as a test case. Toluene concentrations were measured by IMS at one-minute intervals during a ten-minute simulated cleaning operation.

Results: The arrival-time shift was lower at high concentrations because ion production saturates as the toluene concentration approaches the limit of ionizability, with a resulting decrease in slope of the calibration curve. The lower limit of quantification for toluene was assumed to be 13.3 ppm because no arrival-time shift was observed at lower concentrations. The time-averaged toluene concentration measured by IMS for 10 minutes of operation was 45.8 ppm, which is comparable to that measured by gas chromatography-mass spectrometry (GC-MS; 44.3 ppm) within ~3%.

Conclusions: Our results indicate that the measurement of toluene concentrations is possible at one-minute intervals by IMS, making it possible to track rapid changes in workplace conditions. Therefore, IMS can measure exposure to VOCs in real-time with an accuracy similar to that of GC-MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841791PMC
http://dx.doi.org/10.1539/eohp.2023-0025-OADOI Listing

Publication Analysis

Top Keywords

real-time monitoring
12
work environment
8
ion-mobility spectrometry
8
toluene concentrations
8
measured ims
8
one-minute intervals
8
arrival-time shift
8
toluene concentration
8
ims
6
toluene
6

Similar Publications

Integration of Photodiagnosis and Therapy Guided by Micro/Nanorobots.

Adv Mater

March 2025

Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.

Micro/Nanorobots(MNRs)integrated with phototherapy represent an emerging approach to cancer treatment and hold significant potential for addressing bacterial infections, neurological disorders, cardiovascular diseases, and related conditions. By leveraging micro/nanoscale motor systems in conjunction with phototherapy, these robots enable real-time guidance and monitoring of therapeutic processes, improving drug delivery precision and efficiency. This integration not only enhances the effectiveness of phototherapy but also minimizes damage to surrounding healthy tissues.

View Article and Find Full Text PDF

Significance: Coronary artery disease is the leading cause of death worldwide, accounting for 16% of all deaths. A common treatment is coronary artery bypass grafting (CABG), though up to 12% of bypass grafts fail during surgery. Early detection of graft failure by intraoperative graft patency assessment could prevent severe complications.

View Article and Find Full Text PDF

Wearable sensors have emerged as a transformative technology, enabling real-time monitoring and advanced functionality in various fields, including healthcare, human-machine interaction, and environmental sensing. This review provides a comprehensive overview of the latest advancements in wearable sensor technologies, focusing on innovations in sensor design, material flexibility, and integration with machine learning. We explore the feasibility of wearable electronics in achieving high-performance, flexible devices and discuss their potential to enhance human-machine interactions through intelligent data processing and decision-making.

View Article and Find Full Text PDF

Transplantation is the standard treatment for end-stage kidney disease but carries with it a non-trivial risk of post-operative complication. There is a need for a continuous, real-time, not additionally invasive method of monitoring organ perfusion. We present an approach to allograft perfusion monitoring using a human kidney model using normothermic perfusion (EVNP) and custom spectroscopic optical reflectance probes.

View Article and Find Full Text PDF

Biosensors are innovative and cost-effective analytical devices that integrate biological recognition elements (bioreceptors) with transducers to detect specific substances (biomolecules), providing a high sensitivity and specificity for the rapid and accurate point-of-care (POC) quantitative detection of selected biomolecules. In the meat production chain, their application has gained attention due to the increasing demand for enhanced food safety, quality assurance, food fraud detection, and regulatory compliance. Biosensors can detect foodborne pathogens (, , Shiga-toxin-producing /STEC, , etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!