Glycogen is a neutral cargo of bulk autophagy in .

Autophagy Rep

Department of Biology, Georgia State University, Atlanta, GA 30303, USA.

Published: February 2025

Glycogen is a primary cellular energy store in numerous eukaryotes. Its biosynthesis is a main strategy to cope with forthcoming starvation. During starvation, glycogen is processed in the cytosol or delivered for degradation to animal lysosomes or yeast vacuoles by macroautophagy (hereafter autophagy). However, the mechanism of glycogen autophagy is poorly understood, especially in the heart and skeletal muscles that suffer from the lysosomal glycogen accumulation in Pompe disease. We recently developed the yeast as a simple model to study glycogen autophagy and found that this pathway proceeds non-selectively. However, studies in proposed glycogen as a non-preferred cargo of bulk autophagy. In our latest study with new fluorescent reporters for glycogen, we clarified cargo properties of glycogen. Both homologous and heterologous markers of glycogen are delivered to the vacuole and degraded with efficiencies that are independent of glycogen, suggesting that glycogen is a neutral cargo of bulk autophagy. This work provides insights into the evolutionary diversity of glycogen autophagy in yeasts with implications for understanding this process in complex eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864558PMC
http://dx.doi.org/10.1080/27694127.2025.2467454DOI Listing

Publication Analysis

Top Keywords

glycogen
13
cargo bulk
12
bulk autophagy
12
glycogen autophagy
12
glycogen neutral
8
neutral cargo
8
autophagy
7
cargo
4
autophagy glycogen
4
glycogen primary
4

Similar Publications

Chromosome 22q11.2 deletion increases the risk of neuropsychiatric disorders like autism and schizophrenia. Disruption of large-scale functional connectivity in 22q11 deletion syndrome (22q11DS) has been widely reported, but the biological factors driving these changes remain unclear.

View Article and Find Full Text PDF

MLX phosphorylation stabilizes the ChREBP-MLX heterotetramer on tandem E-boxes to control carbohydrate and lipid metabolism.

Sci Adv

March 2025

Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.

Carbohydrate-responsive element binding protein (ChREBP) and Max-like protein X (MLX) form a heterodimeric transcription factor complex that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called carbohydrate-responsive element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated remains poorly understood.

View Article and Find Full Text PDF

Interleukin 24 (IL-24) is a tumor-suppressing protein currently in clinical trials. We previously demonstrated that IL-24 leads to apoptosis in cancer cells through protein kinase A (PKA) activation in human breast cancer cells. To better understand the mechanism by which IL-24 induces apoptosis, we analyzed the role of glycogen synthase kinase-3 beta (GSK3β), a highly conserved serine/threonine kinase in cancer cells and a downstream target of PKA.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!