Progress in the Application of Molecular Hydrogen in Medical Skin Cosmetology.

Clin Cosmet Investig Dermatol

Shandong University of the Arts, International College of Art Exchange, Department of Drama, Film and Art Design, Jinan, Shandong, People's Republic of China.

Published: March 2025

Molecular hydrogen is a colorless, tasteless, biologically active small-molecule gas with reducing properties, demonstrating therapeutic and preventive effects across various human systems. Its mechanisms of action include selective antioxidation, anti-inflammatory effects, apoptosis inhibition, and the regulation of gene expression and signaling pathways. In the skin, molecular hydrogen reduces oxidative damage by scavenging free radicals and inhibiting oxidative stress, leading to improvements in texture and tone. It also regulates the inflammatory response, alleviating redness, itching, and discomfort, while promoting skin repair and regeneration. Moreover, hydrogen activates antioxidant enzymes in skin cells, boosting their antioxidant capacity and delaying aging. Clinical trials show that molecular hydrogen significantly improves conditions like acne, chloasma, and skin sensitivity. However, research in skin cosmetology remains in its early stages, with unanswered questions regarding mechanisms of action, optimal dosage, and long-term safety. Further investigation through clinical trials is essential for expanding its applications in this field. Molecular hydrogen holds significant promise in skin cosmetology, and as research and technology evolve, it is expected to drive innovations and breakthroughs in skin care. This review examines the therapeutic potential, mechanisms, and clinical applications of molecular hydrogen in skin cosmetology, addressing challenges and proposing pathways for future advancements in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887501PMC
http://dx.doi.org/10.2147/CCID.S500255DOI Listing

Publication Analysis

Top Keywords

molecular hydrogen
24
skin cosmetology
16
skin
9
mechanisms action
8
clinical trials
8
hydrogen
7
molecular
6
progress application
4
application molecular
4
hydrogen medical
4

Similar Publications

Elucidating how trace gases interact with ice surfaces utilizing sum frequency generation spectroscopy.

Faraday Discuss

March 2025

Boise State University, Department of Chemistry and Biochemistry, 1910 University Drive, Boise, Idaho, 83702, USA.

The interaction between ice surfaces and trace gases plays a significant role in atmospheric chemistry, such as chemical and photochemical reactions contributing to ozone depletion and secondary aerosol formation. The study of molecular-level properties of the ice surface and small organic molecule adsorption, are essential to understand the impact of hosting these molecules and further chemical reactions. To capture a molecular understanding of the interface, the use of a surface selective technique, such as sum frequency generation (SFG) spectroscopy, is crucial to probe ice surfaces and observe the adsorption of molecules on ice surfaces.

View Article and Find Full Text PDF

Single-Atom-Embedded Nitrogen-Doped Graphene as Efficient Electrocatalysts for the CO Reduction Reaction.

Langmuir

March 2025

Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi 830017, China.

Single-atom catalysts (SACs) have displayed unprecedented activity and selectivity for electrochemical CO reduction reaction (CORR). Herein, a series of metal single atoms embedded on nitrogen-doped graphene (M-NG, where M = In, Tl, Ge, Sn, Pb, Sb, and Bi) is systematically evaluated as CORR electrocatalysts by density functional theory (DFT) calculations. The computational results show that most M-NG exhibit better CORR selectivity over the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Background: Differential diagnosis of pleural effusions poses a considerable challenge in clinical practice. In this study, we explored biomarkers in pleural fluid for distinguishing tuberculosis, malignant, and parapneumonic pleural effusion patients.

Methods: A total of 166 patients with exudative pleural effusion were collected, including 86 patients with tuberculosis pleural effusion (TPE), 52 patients with malignant pleural effusion (MPE), and 28 patients with parapneumonic effusion (PE).

View Article and Find Full Text PDF

Monochromatic Responsive HOF Heterostructures via VIA-Group-Based Framework Hybridization for Fully-Covert Photonic Barcode.

Adv Mater

March 2025

Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.

Luminescent responsive heterostructures with region-domained emission and integrated responsiveness exhibit great potential in information security, but always suffer from the direct exposure of fingerprint information at the initial state, making it easy to decode the hidden confidential information. Herein, the first monochromatic responsive hydrogen-bonded organic framework (HOF) heterostructures are reported based on VIA-group-based framework hybridization toward fully-covert photonic barcodes. Designed HOF blocks with different VIA-group elements are integrated via a configuration-assimilation-based assembly method to generate the intrinsic monochromatic HOF heterostructures.

View Article and Find Full Text PDF

Hard carbon is the sole anode material employed in commercial sodium-ion batteries. However, its intrinsic defects and impurities will lead to battery failure, diminishing further development of sodium batteries in energy storage. Here, an acrylonitrile copolymer and poly(ethylene oxide) (LA/PEO) composite binder is developed to address these challenges in biomass-derived hard carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!