Mycorrhizal fungi have been shown to promote seed germination and seedling growth in Orchidaceae plants. In the present study, a mycorrhizal fungus designated as BJ1 was isolated from the roots of (Thunb.) Reiehb.f. Fluorescence staining and morphological analysis revealed that this fungus exhibited characteristics highly similar to those of . Subsequently, the strain was confirmed as a new strain of through sequencing and phylogenetic analysis of four loci: the internal transcribed spacer region ITS1-ITS4 (ITS), ATP synthase (C14436), glutamate synthase (C4102), and ATP deconjugase (C3304). Additionally, we investigated the biological activity of strain BJ1 and its effects on germination and growth of seeds. The results indicated that BJ1 is capable of producing plant cell-degrading enzymes, including pectinase and protease. Furthermore, it demonstrates an ability to solubilize inorganic phosphorus and synthesize indoleacetic acid (IAA). Nevertheless, it does not exhibit laccase activity or possess the capacity to produce siderophores, nor can it solubilize organic phosphorus. Microscopic observations revealed that strain BJ1 mainly colonizes the base of the protocorm, thereby enhancing seed germination, growth, and expansion. Notably, by the fourth week of germination, 74.23% of seeds in the symbiotic group had developed to stage 5, a significantly higher proportion compared to 50.43% in the non-symbiotic group. Additionally, the length, width, and fresh weight of seeds in the symbiotic group were 2.2 times, 1.8 times, and 3.7 times greater than those in the non-symbiotic group, respectively. Furthermore, by adding L-tryptophan as a substrate during co-cultivation with BJ1, there was a significant enhancement in IAA synthesis capability; this also led to a marked acceleration in the symbiotic germination process of seeds. These results suggest that strain BJ1 holds significant potential for application in the artificial propagation of seedlings. It can enhance propagation efficiency and improve seedling quality, thereby playing a crucial role in the conservation and sustainable development of germplasm resources of endangered orchids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885232 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1542585 | DOI Listing |
Front Plant Sci
February 2025
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China.
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
February 2025
Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea.
Unlabelled: , a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in confirmed predominant nucleus localization.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
February 2025
College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China.
The slow growth rate of Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones.
View Article and Find Full Text PDFBMC Plant Biol
March 2025
College of Animal Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
To enhance the cultivation and utility of alfalfa (Medicago sativa) in calcium-rich environments, we assessed the germination, growth, and physiological responses of seven alfalfa varieties-Crown, Dieter, PANGO, Gladiator, Victoria, WL525, and Magnum 801-under varying calcium chloride (CaCl) concentrations (0, 5, 25, and 50 mmol·L). Germination indices, root and shoot growth, enzyme activities, and osmotic regulation parameters were analyzed to evaluate adaptive responses to calcium stress. Our results showed that alfalfa adapts to calcium stress by increasing root length, enhancing enzyme activities, regulating osmotic substance content, and reducing malondialdehyde levels, thereby striving to maintain stable dry matter content.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
The release of petroleum hydrocarbons (PHCs) into the environment is primarily linked to petroleum industry activities, including drilling, exploration, storage, and related processes. The spillage of PHCs into the environment poses significant threats to ecosystems and can lead to serious risks to human health, the environment, and plants. This research aims to investigate the phytotoxic effect of petroleum sludge on the germination and growth characteristics of Salicornia sinus-persica.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!