Selecting low-nitrogen(N)-tolerant maize hybrids represent an effective approach to enhancing nitrogen use efficiency grain yield. However, the impact of nitrogen fertilization on protein accumulation in low-N-tolerant hybrids remain insufficiently explored. In this paper, a two-year field orientation trial was conducted at four nitrogen fertilizer rate with the different low-N-tolerant maize hybrids. The effect of nitrogen fertilization on the accumulation of protein and its fractions different kernels positions of different low-N-tolerant maize hybrids was studied. The results showed that the protein yield of ZH311 maize kernels was significantly higher than that of XY508, especially under low-N conditions (0N and 150N), and was 25.7%-36.2% higher than that of XY508. There was a significant correlation between protein yield and the accumulation of crude protein and protein fractions. Compared with XY508, the crude protein of ZH311 entered the rapid growth stage later and lasted for a relatively shorter period, but it was 50.8%-53.0% higher due to its higher accumulation rates (v and v) in its middle and late stages, especially in the apical grains. Under low-N conditions, the difference in crude protein accumulation between the apical and basal-middle kernels of ZH311 was only 4.3-8.2%, whereas the difference in XY508 was 29.9-37.3%, suggesting that low-N-tolerant maize hybrids improve protein yield by increasing the accumulation of proteins and their fractions in the apical kernels. Nitrogen fertilization had a greater effect on protein accumulation and yield in XY508, especially on the top kernel and protein yield. In the future, more attention should be paid to the effect of apical kernels when breeding high-quality maize hybrids tolerant to low nitrogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885128 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1526026 | DOI Listing |
Diversified planting patterns are important measures to improve the comprehensive grain production capacity, alleviate the contradiction between grain crops and forage planting, and enhance water production efficiency. In order to explore the suitable diversified planting modes in the Yellow River irrigation area of Ningxia, a total of 4 treatments were designed, including wheat-maize silage intercropping and multiple planting of sorghum-sudangrass hybrid after wheat harvest (T1); wheat-cabbage intercropping, multiple planting of oil sunflower after wheat harvest, followed by maize silage planting after cabbage harvest (T2); sole wheat, after the harvest of wheat, half of the land is used for multiple plantings of maize silage, and the other half is used for multiple plantings of oil sunflower (T3); and sole maize silage (T4). The results showed that all diversified planting modes can increase biomass and land equivalent ratio compared to the control monoculture.
View Article and Find Full Text PDFFront Plant Sci
February 2025
College of Agronomy, Sichuan Agricultural University, Chengdu, China.
Selecting low-nitrogen(N)-tolerant maize hybrids represent an effective approach to enhancing nitrogen use efficiency grain yield. However, the impact of nitrogen fertilization on protein accumulation in low-N-tolerant hybrids remain insufficiently explored. In this paper, a two-year field orientation trial was conducted at four nitrogen fertilizer rate with the different low-N-tolerant maize hybrids.
View Article and Find Full Text PDFCommun Biol
March 2025
Seeds Research, Syngenta Crop Protection, Durham, NC, USA.
The inherent short lifespan of Zea mays (maize, corn) pollen hinders crop improvement and challenges the hybrid seed production required to produce food, fuel, and feed. Decades of scientific effort on maize pollen storage technology have been unable to deliver a widely accessible protocol that works for liters of pollen at a hybrid seed production scale. Here we show how suppressing the pollen cellular respiration rate through refrigeration and optimizing gas exchange within the storage environment are the critical combination of factors for maintaining pollen viability in storage.
View Article and Find Full Text PDFPlant J
March 2025
Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
Expansion microscopy (ExM) achieves nanoscale imaging by physical expansion of fixed biological tissues embedded in a swellable hydrogel, enhancing the resolution of any optical microscope several-fold. While ExM is commonly used in animal cells and tissues, there are few plant-specific protocols. Protoplasts are a widely used cell system across plant species, especially in studying biomolecule localization.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, Beijing, 100081, China.
Genotype, environment, and genotype-by-environment (G×E) interactions play a critical role in shaping crop phenotypes. Here, a large-scale, multi-environment hybrid maize dataset is used to construct and validate an automated machine learning framework that integrates environmental and genomic data for improved accuracy and efficiency in genetic analyses and genomic predictions. Dimensionality-reduced environmental parameters (RD_EPs) aligned with developmental stages are applied to establish linear relationships between RD_EPs and traits to assess the influence of environment on phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!