Introduction: Glioblastoma (GBM) is the most malignant of the astrocytomas, primarily involving the cerebral hemispheres and cerebral cortex. It is one of the fatal refractory solid tumors with a 5-year survival rate of only 5% in adults. Cells in biological tissues are subjected to mechanical forces, including hydrostatic pressure, shear stress, compression and tension. Cells can convert mechanomechanical signals into biological or electrical signals, a process known as mechanical signaling. Piezo1 channels, members of the Piezo family of mechanosensitive ion channels, can be directly activated by mechanical stimuli alone, mediating mechanosensitive cation currents that activate subsequent signaling pathways. Studies have shown that Piezo1 is largely unexpressed in normal brain tissues but is expressed at high levels in glioblastoma and can significantly contribute to glioblastoma development and progression, but its role in the pathogenesis of glioblastoma remains unclear.
Methods: We reviewed the relevant literature and data in six major databases including PubMed, EMBASE, CINAHL, Scopus, Web of Science and TCGA. Finally, a total of 126 papers were selected for review and analysis (Search terms include: glioblastoma, piezo1, biomechanical, targeted therapy, mechanomechanical, extracellular matrix, radiation therapy and more). The role of piezo1 in the development of glioblastoma was summarized.
Results: Piezo1 affects several fundamental pathophysiological processes in glioblastoma, such as tissue sclerosis, angiogenesis, energy supply, and immune cell infiltration, and can be used as an indicator of malignancy and prognosis in patients with glioblastoma, as well as a therapeutic target to control tumor progression.
Discussion: The pathological mechanism of piezo1 in glioblastoma is very complex, and the aberrant expression of piezo1 plays a very important role in the development of glioblastoma. Specific mechanistic studies focusing on Piezo1 will help us understand the mechanobiology of glioblastoma and help us develop new therapeutic approaches for glioblastoma patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885286 | PMC |
http://dx.doi.org/10.3389/fcell.2025.1536320 | DOI Listing |
It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.
View Article and Find Full Text PDFEndocr Regul
January 2025
1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.
View Article and Find Full Text PDFPurinergic Signal
March 2025
Université Côte dAzur, CNRS, INSERM, IRCAN, Nice, France.
Over the past few years, transcriptomics has emerged as a pillar for modern scientific research, enabling the comprehensive profiling of gene expression. The availability of large-scale public datasets, such as NCBI Gene Expression Omnibus, International Cancer Genome Consortium, and The Cancer Genome Atlas, has significantly boosted many scientific discoveries. However, to analyze and interpret these vast datasets, sophisticated bioinformatic tools are often necessary.
View Article and Find Full Text PDFActa Neurochir (Wien)
March 2025
Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80131, Naples, Italy.
Background: Inferior Fronto-Occipital Fascicle (IFOF) is a multitasking connection bundle essential for communication and high level mentalization. The aim of the present study was to quantitatively assess its radiological-anatomical-morphometric modifications according to different brain tumor histotype.
Methods: A retrospective multicentric Italian study was conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!