In order to improve the accuracy of concentration detection in turbid media, this study proposes a solution concentration detection method based on a variable-angle wedge-shaped sample cell. Each angle of the wedge-shaped sample cell corresponds to a specific optical path combination. By measuring at multiple wedge angles, we can expand a variety of optical path combinations, providing more information about the turbid media. In this study, transmission light intensity distribution characteristics of phantom solutions were collected at wedge angles ranging from 10 to 45°, with a 5° interval, and a multipath combination detection model was constructed. By analyzing the distribution characteristics of the transmission light intensity along the gradient direction, multipath combination information was fused, and a calibration model was constructed using partial least-squares regression. The results show that, compared to the detection method using a fixed-angle to construct multiple optical paths, the multipath combination method effectively improves the accuracy of concentration detection in turbid media, with a prediction set correlation coefficient (Rp) reaching 0.995. Therefore, this study proposes a new method to enhance the accuracy of turbid media detection by utilizing scattering characteristics through the construction of a multipath combination model by varying the wedge-shaped sample cell angles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886670 | PMC |
http://dx.doi.org/10.1021/acsomega.4c09130 | DOI Listing |
Langmuir
March 2025
Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
Associative phase separation (complex coacervation) in liquid-liquid phase separation (LLPS) involves the separation of multiple substances into concentrated and dilute phases by electrostatic interactions. Simple phase separation (simple coacervation) occurs when the hydrophilicity and hydrophobicity of a single molecule change dramatically in response to a specific stimulus. Simple coacervation arises from the lower critical solution temperature (LCST)- and upper critical solution temperature (UCST)-type phase separations in aqueous media containing temperature-responsive polymers.
View Article and Find Full Text PDFACS Omega
March 2025
School of Life Sciences, Tiangong University, Tianjin 300387, China.
In order to improve the accuracy of concentration detection in turbid media, this study proposes a solution concentration detection method based on a variable-angle wedge-shaped sample cell. Each angle of the wedge-shaped sample cell corresponds to a specific optical path combination. By measuring at multiple wedge angles, we can expand a variety of optical path combinations, providing more information about the turbid media.
View Article and Find Full Text PDFSensors (Basel)
February 2025
The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Marine cobalt-rich crusts, extensively used in industries such as aerospace, automotive, and electronics, are crucial mineral resources located on the ocean floor. To effectively exploit these valuable resources, underwater imaging is essential for real-time detection and distribution mapping in mining areas. However, the presence of suspended particles in the seabed mining environment severely degrades image quality due to light scattering and absorption, hindering the effective identification of the target objects.
View Article and Find Full Text PDFWater Res
May 2025
Cranfield University, Cranfield MK43 0AL, United Kingdom. Electronic address:
Conventional cleaning of slow sand filters (SSFs) requires the beds to be drained before a layer of media and the Schmutzdecke are removed, called 'dry skimming' (DS), which can result in significant downtime. An alternative is proposed whereby the filter is skimmed whilst still submerged, called 'underwater skimming' (UWS). Previous attempts to avoid draining the bed have led to concerns about the risks of UWS in terms of headloss development, particle penetration, and microbial water quality.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Center for Reproductive Medicine-Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
Microbiological contamination in the embryo culture media might affect embryo early development and clinical outcomes during IVF procedures. Infections in the genital tract represent the most common causes of culture contamination, but also environmental air quality might have a detrimental effect on reproductive outcomes of infertile couples undergoing IVF procedures. Monitoring microbiological contamination in an embryology laboratory is mandatory and daily tests are performed under laminar vertical flow hood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!