Coal seams in China are characterized by low permeability, high gas pressure, and soft coal, which lead to challenging gas extraction and severe gas disasters. Hydraulic flushing is widely used in the field to enhance the permeability of coal seams. Considering this fact, studying its effect on the stress and permeability variations of loaded coal is essential for upgrading the hydraulic flushing permeability enhancement technology. In the study, large-scale physical simulation experiments on hydraulic flushing were conducted to monitor stress changes in the loaded coal. On this basis, the effect of these stress changes on the permeability was investigated. The results show that the stress falls with fluctuations during hydraulic flushing, and the magnitude of decrease declines with the increase of loading stress. After hydraulic flushing, the cross-section of the hole is an ellipse, whose minor semiaxis aligns with the direction of the lower loading stress in the cross-section. Hydraulic flushing remarkably enhances the permeability, promoting it from 0.368 to 5.112 md, a rise of nearly 1,290%. During stress loading, the permeability changes over time can be divided into three stages, i.e., the compression stage, the linear elastic stage, and the transitional stage from linear elasticity to plasticity. During stress unloading, the permeability increases continuously with the passage of time, which is indicative of remarkable pressure relief and permeability enhancement effects. The permeability of the coal body does not increase linearly with the increase in perforation water pressure but instead exhibits an optimal value. The above results provide important references for optimizing the design of permeability enhancement boreholes under different stress conditions and ensuring safe production in coal mines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886750 | PMC |
http://dx.doi.org/10.1021/acsomega.4c10106 | DOI Listing |
Coal seams in China are characterized by low permeability, high gas pressure, and soft coal, which lead to challenging gas extraction and severe gas disasters. Hydraulic flushing is widely used in the field to enhance the permeability of coal seams. Considering this fact, studying its effect on the stress and permeability variations of loaded coal is essential for upgrading the hydraulic flushing permeability enhancement technology.
View Article and Find Full Text PDFJ Contam Hydrol
February 2025
Alpine Water Resources LLC, Silverton, CO, USA.
Concentration-discharge (CQ) relations are commonly used to understand geochemical and hydrologic controls on the generation of solutes in watersheds. Despite the widespread application of CQ relations, this technique has been infrequently applied to acid mine drainage (AMD) sites, but the CQ framework may allow mechanistic understanding of remedial outcomes such as impoundment of water within underground mines. Results of CQ analyses and changes in metal loads in an AMD affected watershed in Colorado, USA indicate that dissolved loads increased at many individual locations following water impoundment within mine workings.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Mining Safety Science Research Institute Co., Ltd, Guiyang, 550025, China.
To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Earth, Energy and Environment, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
Sulphate (SO), predominantly derived from sulphur (S)-bearing glacial sediments distributed widely across the Canadian Interior Plains, contributes to high groundwater salinity and can be detrimental to riparian and dry-land ecosystems, agricultural production, and water use. While previous researchers investigated SO distribution and dynamics in shallow groundwater at local scales (<1500 km), we examine SO occurrence in groundwater at larger scales, and to depths of ∼150 m, considering variations in geology, glacial history, climate, and geochemical and hydrogeological settings in the Canadian province of Alberta. Sulphate concentrations in groundwater vary considerably, with 15 % of 139,130 samples above the 500 mg/L Canadian drinking water aesthetic objective.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute of Earth Science, China University of Geosciences (Beijing), Beijing 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!