Metabolism and post-translational modifications (PTMs) are intrinsically linked and the number of identified metabolites that can covalently modify proteins continues to increase. This metabolism/PTM crosstalk is especially true for lactate, the product of anaerobic metabolism following glycolysis. Lactate forms an amide bond with the ε-amino group of lysine, a modification known as lysine lactylation, or Kla. Multiple independent mechanisms have been proposed in the formation of Kla, including p300/CBP-dependent transfer from lactyl-CoA, via a high-energy intermediate lactoylglutathione species that non-enzymatically lactylates proteins, and several enzymes are reported to have lactyl transferase capability. We recently discovered that class I histone deacetylases (HDACs) 1, 2, and 3 can all reverse their canonical chemical reaction to catalyze lysine β-hydroxybutyrylation. Here we tested the hypothesis that HDACs can also catalyze Kla formation. Using biochemical, pharmacological, and genetic approaches, we found that HDAC-catalyzed lysine lactylation accounts for the majority of Kla formation in cells. Dialysis experiments confirm this is a reversible reaction that depends on lactate concentration. We also directly quantified intracellular lactyl-CoA and found that Kla abundance can be uncoupled from lactyl-CoA levels. Therefore, we propose a model in which the majority of Kla is formed through enzymatic addition of lactate by HDACs 1, 2, and 3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888385 | PMC |
http://dx.doi.org/10.1101/2025.02.25.640220 | DOI Listing |
Sci Rep
March 2025
Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.
Background Posttranslational modifications of histone lysine (K) have integral connections with cell metabolism, and participate in the carcinogenesis of various cancers. This study focuses on evaluating the expression of histone H4 lys 5 lactylation (H4K5lac) and its clinical role in breast cancer (BC). Methods During this research, immunohistochemistry (IHC) and immunoblotting, utilizing a specific primary anti-L-lactyl-histone H4 (Lys 5) rabbit monoclonal antibody, were employed to assess H4K5lac expression in BC tissue chips.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637.
The recently identified histone modification lysine lactylation can be stimulated by L-lactate and glycolysis. Although the chemical group added upon lysine lactylation was originally proposed to be the L-enantiomer of lactate (K), two isomeric modifications, lysine D-lactylation (K) and N-ε-(carboxyethyl) lysine (K), also exist in cells, with their precursors being metabolites of glycolysis. The dynamic regulation and differences among these three modifications in response to hypoxia remain poorly understood.
View Article and Find Full Text PDFMetabolism and post-translational modifications (PTMs) are intrinsically linked and the number of identified metabolites that can covalently modify proteins continues to increase. This metabolism/PTM crosstalk is especially true for lactate, the product of anaerobic metabolism following glycolysis. Lactate forms an amide bond with the ε-amino group of lysine, a modification known as lysine lactylation, or Kla.
View Article and Find Full Text PDFExp Hematol Oncol
March 2025
School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
Cancer remains the leading cause of mortality worldwide, and the emergence of drug resistance has made the identification of new therapeutic targets imperative. Lactate, traditionally viewed as a byproduct of glycolysis with limited ATP-producing capacity, has recently gained recognition as a critical signaling molecule. It plays a key role not only in cancer cell metabolism but also in shaping the tumor microenvironment (TME).
View Article and Find Full Text PDFInt J Mol Med
May 2025
Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!