Unlabelled: Familial mutations in myocilin cause vision loss in glaucoma due to misfolding and a toxic gain of function in a senescent cell type in the anterior eye. Here we characterize the cellular behavior and structure of the myocilin (myocilin ) mutant, of uncertain pathogenicity. Our characterization of A427T demonstrates that even mutations that minimally perturb myocilin structure and stability can present challenges for protein quality control clearance pathways. Namely, when expressed in an inducible immortalized trabecular meshwork cell line, inhibition of the proteasome reroutes wild-type myocilin, but not myocilin , from endoplasmic reticulum associated degradation to lysosomal degradation. Yet, the crystal structure of the A427T myocilin olfactomedin domain shows modest perturbations largely confined to the mutation site. The previously unappreciated range of mutant myocilin behavior correlating with variable stability and structure provides a rationale for why it is challenging to predict causal pathogenicity of a given myocilin mutation, even in the presence of clinical data for members of an affected family. Comprehending the continuum of mutant myocilin behavior in the laboratory supports emerging efforts to use genetics to assess glaucoma risk in the clinic. In addition, the study supports a therapeutic strategy aimed at enhancing autophagic clearance of mutant myocilin.

Significance Statement: Rare familial mutations cause early onset glaucomaA427T is a case of uncertain pathogenicityA427T is structurally similar to wild-type but is not efficiently degraded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888440PMC
http://dx.doi.org/10.1101/2025.02.26.640437DOI Listing

Publication Analysis

Top Keywords

mutant myocilin
12
myocilin
11
familial mutations
8
myocilin myocilin
8
myocilin behavior
8
mutant
5
structural basis
4
basis anomalous
4
anomalous cellular
4
cellular trafficking
4

Similar Publications

Unlabelled: Familial mutations in myocilin cause vision loss in glaucoma due to misfolding and a toxic gain of function in a senescent cell type in the anterior eye. Here we characterize the cellular behavior and structure of the myocilin (myocilin ) mutant, of uncertain pathogenicity. Our characterization of A427T demonstrates that even mutations that minimally perturb myocilin structure and stability can present challenges for protein quality control clearance pathways.

View Article and Find Full Text PDF

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that accurately replicates these human POAG features has been lacking.

View Article and Find Full Text PDF

Rationale: The MYOC gene is associated with juvenile open-angle glaucoma (JOAG). This study aims to provide genetic counseling for a Chinese JOAG family by detecting MYOC mutations to identify high-risk individuals for early JOAG intervention. It also supplements the clinical characteristics of glaucoma patients with MYOC gene mutations.

View Article and Find Full Text PDF

Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

In myocilin-associated glaucoma, pathogenic missense mutations accumulate mainly in the olfactomedin domain (mOLF) of myocilin. This makes the protein susceptible to aggregation, where mOLF-mOLF dimerization is possibly an initial stage. Nevertheless, there are no molecular level studies that have probed the nature of interactions occurring between two mOLF domains and the key characteristics of the resulting dimer complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!