Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alzheimer's disease (AD) risk and progression are significantly influenced by APOE genotype with APOE4 increasing and APOE2 decreasing susceptibility compared to APOE3. While the effect of those genotypes was extensively studied on blood metabolome, less is known about their impact in the brain. Here we investigated the impacts of APOE genotypes and aging on brain metabolic profiles across the lifespan, using human APOE-targeted replacement mice. Biocrates P180 targeted metabolomics platform was used to measure a broad range of metabolites probing various metabolic processes. In all genotypes investigated we report changes in acylcarnitines, biogenic amines, amino acids, phospholipids and sphingomyelins during aging. The decreased ratio of medium to long-chain acylcarnitine suggests a reduced level of fatty acid β-oxidation and thus the possibility of mitochondrial dysfunction as these animals age. Additionally, aging APOE2/2 mice had altered branch-chain amino acids (BCAA) profile and increased their downstream metabolite C5 acylcarnitine, indicating increased branched-chain amino acid utilization in TCA cycle and better energetic profile endowed by this protective genotype. We compared these results with human dorsolateral prefrontal cortex metabolomic data from the Religious Orders Study/Memory and Aging Project, and we found that the carriers of APOE2/3 genotype had lower markers of impaired BCAA katabolism, including tiglyl carnitine, methylmalonate and 3-methylglutaconate. In summary, these results suggest a potential involvement of the APOE2 genotype in BCAA utilization in the TCA cycle and nominate these humanized APOE mouse models for further study of APOE in AD, brain aging, and brain BCAA utilization for energy. We have previously shown lower plasma BCAA to be associated with incident dementia, and their higher levels in brain with AD pathology and cognitive impairment. Those findings together with our current results could potentially explain the AD-protective effect of APOE2 genotype by enabling higher utilization of BCAA for energy during the decline of fatty acid β-oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888404 | PMC |
http://dx.doi.org/10.1101/2025.02.25.640178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!