Proteins phase-separate to form condensates that partition and concentrate biomolecules into membraneless compartments. These condensates can exhibit dichotomous behaviors in biology by supporting cellular physiology or instigating pathological protein aggregation . Tau and α- synuclein (αSyn) are neuronal proteins that form heterotypic (Tau:αSyn) condensates associated with both physiological and pathological processes. Tau and αSyn functionally regulate microtubules , but are also known to misfold and co-deposit in aggregates linked to various neurodegenerative diseases , which highlights the paradoxically ambivalent effect of Tau:αSyn condensation in health and disease. Here, we show that tubulin modulates Tau:αSyn condensates by promoting microtubule interactions, competitively inhibiting the formation of homotypic and heterotypic pathological oligomers. In the absence of tubulin, Tau-driven protein condensation accelerates the formation of toxic Tau:αSyn heterodimers and amyloid fibrils. However, tubulin partitioning into Tau:αSyn condensates modulates protein interactions, promotes microtubule polymerization, and prevents Tau and αSyn oligomerization and aggregation. We distinguished distinct Tau and αSyn structural states adopted in tubulin-absent (pathological) and tubulin-rich (physiological) condensates, correlating compact conformations with aggregation and extended conformations with function. Furthermore, using various neuronal cell models, we showed that loss of stable microtubules, which occurs in Alzheimer's disease and Parkinsons disease patients , results in pathological oligomer formation and loss of neurites, and that functional condensation using an inducible optogenetic Tau construct resulted in microtubule stablization. Our results identify that tubulin is a critical modulator in switching Tau:αSyn pathological condensates to physiological, mechanistically relating the loss of stable microtubules with disease progression. Tubulin restoration strategies and Tau-mediated microtubule stabilization can be potential therapies targeting both Tau-specific and Tau/αSyn mixed pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888465 | PMC |
http://dx.doi.org/10.1101/2025.02.27.640500 | DOI Listing |
Double metal cyanide (DMC), a heterogeneous catalyst, provides a surface for the polymerization of amino acids. Based on the hypothesis, the present study is designed to evaluate favorable environmental conditions for the chemical evolution and origin of life, such as the effects of temperature and time on the oligomerization of glycine and alanine on metal(ii) hexacyanocobaltate(iii), MHCCo. A series of MHCCo complexes were synthesized and characterized by XRD and FT-IR techniques.
View Article and Find Full Text PDFHlife
January 2025
Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Maryland, USA.
Plasmid DNA transfection is one of the fundamental tools of biomedical research. Here, we found that plasmid DNA transfection mediated by liposomes activates multiple innate immune responses in several widely used cell lines. Their activations were visible by detection of stress granules (SG) and cGAS-DNA condensates (cGC) in the transfected cells in a plasmid DNA dose-dependent manner.
View Article and Find Full Text PDFFront Chem
February 2025
Department of Pediatrics, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China.
In the face of bacterial hazards to human health and resistance to multiple antibiotics, there is an urgent need to develop new antibiotics to meet the challenge. In this paper, the triazolyl heterocyclic (3-amino-1,2,4-triazole, ) was synthesised efficiently using thiourea as starting material. Finally, the end product was obtained by aldehyde-amine condensation reaction and the structures of all compounds were determined by spectral analysis.
View Article and Find Full Text PDFFront Oncol
February 2025
Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China.
Background: Growing evidence indicates that abnormal liquid-liquid phase separation (LLPS) can disrupt biomolecular condensates, contributing to cancer development and progression. However, the influence of LLPS on the prognosis of head and neck squamous cell carcinoma (HNSCC) patients and its effects on the tumor immune microenvironment (TIME) are not yet fully understood. Therefore, we aimed to categorize patients with HNSCC based on LLPS-related genes and explored their multidimensional heterogeneity.
View Article and Find Full Text PDFFront Oncol
February 2025
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
Tumor motion is a major challenge for scanned ion-beam therapy. In the case of lung tumors, strong under- and overdosage can be induced due to the high density gradients between the tumor- and bone tissues compared to lung tissues. This work proposes a non-invasive concept for 4D monitoring of high density gradients in carbon ion beam therapy, by detecting charged fragments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!