Drugs of abuse in adolescence impact brain maturation and increase psychiatric risk, with differences in sensitivity between males and females. Amphetamine in adolescent male, but not female mice, causes dopamine axons intended to innervate the nucleus accumbens and to grow ectopically to the prefrontal cortex (PFC). This is mediated by drug-induced downregulation of the Netrin-1 receptor DCC. How off-target dopamine axons function in the adult PFC remains to be determined. Here we report that males and females show place preference for amphetamine in adolescence. However, only in males, amphetamine increases PFC dopamine transporter expression in adulthood: leading to aberrant baseline dopamine transients, faster dopamine release, and exaggerated responses to acute methylphenidate. Upregulation of DCC in adolescence, using CRISPRa, prevents all these changes. Mesolimbic dopamine axons rerouted to the PFC in adolescence retain anatomical and functional phenotypes of their intended target, rendering males enduringly vulnerable to the harmful effects of drugs of abuse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888448PMC
http://dx.doi.org/10.1101/2025.02.26.640363DOI Listing

Publication Analysis

Top Keywords

dopamine axons
12
amphetamine adolescence
8
mesolimbic dopamine
8
prefrontal cortex
8
drugs abuse
8
males females
8
dopamine
7
amphetamine
4
adolescence induces
4
induces sex-specific
4

Similar Publications

Spinal circuits generate locomotor rhythms, but the mechanisms behind episodic locomotor behaviors remain unclear. This study investigated dopamine-induced episodic rhythms in isolated neonatal mouse spinal cords to understand these mechanisms. The episodic rhythms were generally synchronous and propagated rostro-caudally, although occasional asynchrony was observed.

View Article and Find Full Text PDF

Drugs of abuse in adolescence impact brain maturation and increase psychiatric risk, with differences in sensitivity between males and females. Amphetamine in adolescent male, but not female mice, causes dopamine axons intended to innervate the nucleus accumbens and to grow ectopically to the prefrontal cortex (PFC). This is mediated by drug-induced downregulation of the Netrin-1 receptor DCC.

View Article and Find Full Text PDF

Synchrony between midbrain gene transcription and dopamine terminal regulation is modulated by chronic alcohol drinking.

Nat Commun

February 2025

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.

Alcohol use disorder is marked by disrupted behavioral and emotional states which persist into abstinence. The enduring synaptic alterations that remain despite the absence of alcohol are of interest for interventions to prevent relapse. Here, 28 male rhesus macaques underwent over 20 months of alcohol drinking interspersed with three 30-day forced abstinence periods.

View Article and Find Full Text PDF

Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g.

View Article and Find Full Text PDF

Epidemiological studies often link circulatory levels of 25 hydroxy vitamin D with an overwhelming variety of disorders. Of such studies, an increasing number are now linking blood 25 hydroxy vitamin D levels with certain brain disorders. Prominent amongst such disorders are schizophrenia and Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!