Hematopoietic stem cell (HSC) fate is shaped by distinct microenvironments termed niches within the bone marrow. Quiescence, expansion, and differentiation are directly and indirectly regulated by complex combinations of cell secretomes, cell-cell interactions, mechanical signals, and metabolic factors including oxygen tension. The perivascular environment in the bone marrow has been implicated in guiding HSC fate. However, bone marrow presents an environment which is hypoxic (∼1-4% O ) relative to traditional cell culture conditions, and the study of hypoxia in vitro is complicated by the speed with which normoxic conditions during HSC isolation induce differentiation. There is a unique opportunity to use engineered models of the bone marrow to investigate the impact of defined hypoxia on HSC fate. Here, we examine the coordinated impact of oxygen tension and the perivascular secretome upon murine hematopoietic stem and progenitor cells (HSPCs) in vitro. Our findings highlight the importance of mitigating oxygen shock during cell isolation in engineered marrow models. We report a shift toward the Lineage phenotype with hypoxic culture, expansion of HSPCs in response to perivascular niche conditioned medium, and enhanced HSPC maintenance in a hydrogel model of bone marrow in hypoxic culture when oxygen shock is mitigated during isolation using cyclosporin A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888168PMC
http://dx.doi.org/10.1101/2025.02.20.639296DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
hsc fate
12
model bone
8
perivascular niche
8
hematopoietic stem
8
oxygen tension
8
tension perivascular
8
oxygen shock
8
hypoxic culture
8
marrow
7

Similar Publications

Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.

View Article and Find Full Text PDF

The erythroblastic island (EBI) functions as a niche in which erythroblastic island macrophages (EBIMφs) are positioned within rings of erythroblasts, providing support and signals that orchestrate efficient erythropoiesis. We postulated burn injury impacts the EBI niche, given the nearly universal presence of anemia and inflammation in burn patients, and a divergent myeloid transcriptional signature that we observed in murine bone marrow following burn injury, in which granulocyte colony-stimulating factor (G-CSF) secretion broadly attenuated the expression of EBIMφ marker genes. Notably, we identified the heme-induced transcription factor Spi-C as a robust marker of EBIMφs in Spicigfp/igfp mice.

View Article and Find Full Text PDF

Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs.

View Article and Find Full Text PDF

Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity.

J Immunol

March 2025

INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.

Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.

View Article and Find Full Text PDF

Comparison of human macrophages derived from peripheral blood and bone marrow.

J Immunol

March 2025

Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.

Macrophage differentiation, phenotype, and function have been assessed extensively in vitro by predominantly deriving human macrophages from peripheral blood. It is accepted that there are differences between macrophages isolated from different human tissues; however, the importance of anatomical source for in vitro differentiation and characterization is less clear. Here, phenotype and function were evaluated between human macrophages derived from bone marrow or peripheral blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!