Dendrites grow by stochastic branching, elongation, and retraction. A key question is whether such a mechanism is sufficient to form highly branched dendritic morphologies. Alternatively, are signals from other cells or is the topological hierarchy of the growing network necessary for dendrite geometry? To answer these questions, we developed a mean-field model in which branch dynamics is isotropic and homogenous (i.e., no extrinsic instruction) and depends only on the average lengths and densities of branches. Branching is modeled as density-dependent nucleation so there are no tree structures and no network topology. Despite its simplicity, the model predicted several key morphological properties of class IV Drosophila sensory dendrites, including the exponential distribution of branch lengths, the parabolic scaling between dendrite number and length densities, the tight spacing of the dendritic meshwork (which required minimal total branch length), and the radial orientation of branches. Stochastic growth also accelerated the overall expansion rate of the arbor. Therefore, stochastic dynamics is an economical and rapid space-filling mechanism for building dendritic arbors without external guidance or hierarchical branching mechanisms. Our model provides a general theoretical framework for understanding how macroscopic branching patterns emerge from microscopic dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888375 | PMC |
http://dx.doi.org/10.1101/2025.02.24.639873 | DOI Listing |
Biofactors
March 2025
Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
Colorectal cancer (CRC) exhibits a complex tumor microenvironment with significant cellular heterogeneity, particularly involving cancer-associated fibroblasts that influence tumor behavior and metastasis. This study integrated single-cell RNA sequencing and spatial transcriptomics to dissect fibroblast heterogeneity in CRC. Data processing employed Seurat for quality control, principal component analysis for dimensionality reduction, and t-Distributed Stochastic Neighbor Embedding for visualization.
View Article and Find Full Text PDFDendrites grow by stochastic branching, elongation, and retraction. A key question is whether such a mechanism is sufficient to form highly branched dendritic morphologies. Alternatively, are signals from other cells or is the topological hierarchy of the growing network necessary for dendrite geometry? To answer these questions, we developed a mean-field model in which branch dynamics is isotropic and homogenous (i.
View Article and Find Full Text PDFNatural killer (NK) cells are classically defined as innate immune cells, but experiments show that mouse cytomegalovirus (MCMV) infection in C57BL/6 mice can cause NK cells to undergo antigen-specific proliferation and memory formation, similar to adaptive CD8+ T cells. One shared behavior between CD8+ T cells and NK cells is clonal expansion, where a single stimulated cell proliferates rapidly to form a diverse population of cells. For example, clones derived from single cells are most abundant during expansion when they are primarily CD27-for NK cells and CD62L-for T cells, phenotypes derived from precursor CD27+ and CD62L+ cells, respectively.
View Article and Find Full Text PDFMechanistic models of dynamic, interacting cell populations have yielded many insights into the growth and resolution of immune responses. Historically these models have described the behavior of pre-defined cell types based on small numbers of phenotypic markers. The ubiquity of deep pheno-typing therefore presents a new challenge; how do we confront tractable and interpretable mathematical models with high-dimensional data? To tackle this problem, we studied the development and persistence of lung-resident memory CD4 and CD8 T cells (T ) in mice infected with influenza virus.
View Article and Find Full Text PDFFront Immunol
March 2025
Department of Neurology, University Hospital Würzburg (UKW), Würzburg, Germany.
Introduction: In autoimmune nodopathies, autoantibodies target the nodes of Ranvier, impairing saltatory nerve conduction. Understanding the impact of autoantibody binding on protein assembly is crucial for gaining insights into the pathogenicity of different autoantibodies. We investigated nodal, paranodal, and cytoskeletal axonal proteins in teased fibers from a sural nerve biopsy of a patient with anti-pan-neurofascin autoantibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!