Pharmacologic activation of the innate immune response is being actively being pursued for numerous clinical purposes including enhancement of vaccine potency and potentiation of anti-cancer immunotherapy. Pattern recognition receptors (PRRs) represent especially useful targets for these efforts as their engagement by agonists can trigger signaling pathways that associate with phenotypes desirable for specific immune outcomes. Stimulator of interferon genes (STING) is an ER-resident PRR reactive to cyclic dinucleotides such as those synthesized endogenously in response to cytosolic dsDNA. STING activation leads to transient generation of type I interferon (IFN-I) and proinflammatory responses that augment immunologically relevant effects including antiviral responses, antigen presentation, immune cell trafficking, and immunogenic cell death. In recent years engineered cyclic dinucleotides and small molecules have been discovered that induce STING and safely confer clinically useful outcomes in animal models such as adjuvanticity of anti-microbial vaccines and tumor clearance. Unfortunately, clinical trials examining the efficacy of STING agonists have thus far failed to satisfactorily recapitulate these positive outcomes and this has prevented their translational advancement. A likely relevant yet perplexingly under investigated aspect of pharmacologic STING activation is the diversity of molecular and immune responses that associate with chemical properties of the agonist. Based on this, a comparative survey of these was undertaken using unrelated STING-activating molecules to characterize the molecular, innate, cellular, and immune outcomes they elicit. This was done to inform and direct future studies aimed at designing and selecting agonists appropriate for desired clinical goals. This revealed demonstrable differences between the agonists in potency, transcriptomes, cytokine secretion profiles, immune cell trafficking, and antigen-directed humoral and cell mediated immune responses. As such, this work illustrates that phenotypes deriving from activation of a protein target can be linked to chemical properties of the engaging agonist and thus heightened scrutiny is necessary when selecting molecules to generate specific effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888229 | PMC |
http://dx.doi.org/10.1101/2025.02.21.639458 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
Fudan University, 131, Dongan Road, Shanghai, CHINA.
Nanovaccines hold significant promise for the prevention and treatment of infectious diseases. However, the efficacy of many nanovaccines is often limited by inadequate stimulation of both innate and adaptive immune responses. Herein, we explore a rational vaccine strategy aimed at modulating innate cell microenvironments within lymph nodes (LNs) to enhance the generation of effective immune responses.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFMicrobiol Immunol
March 2025
Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.
C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity.
View Article and Find Full Text PDFCirculation
March 2025
Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL. (MF., Z.-D.G., M.D., C.L., K.G., S.E.W., E.B.T.).
Background: Despite the high morbidity and mortality of heart failure with preserved ejection fraction (HFpEF), treatment options remain limited. The HFpEF syndrome is associated with a high comorbidity burden, including high prevalence of obesity and hypertension. Although inflammation is implicated to play a key role in HFpEF pathophysiology, underlying causal mechanisms remain unclear.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.
Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.
Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.
Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!