Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave (CW) lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, limiting real-time perturbation of biomolecules with mobility or complex distribution. Additionally, existing technologies separate fs pulse delivery and imaging, preventing simultaneous recording of cellular responses. To overcome these challenges, we introduce fs real-time precision opto-control (fs-RPOC), which integrates a laser scanning microscope with a closed-loop feedback mechanism for automated, chemically selective subcellular perturbation. fs-RPOC achieves superior spatial precision and fast response time, enabling single- and sub-organelle microsurgery of dynamic targets and localized molecular modulation. By applying a pulse-picking method, fs-RPOC independently controls laser average and peak power at any desired subcellular compartment. Targeting mitochondria, fs-RPOC reveals site-specific molecular responses resulting from fs-laser-induced ROS formation, H O diffusion, and low-density plasma generation. These findings offer new insights into fs laser interactions with subcellular compartments and demonstrate fs-RPOC's potential for precise molecular and organelle regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888216PMC
http://dx.doi.org/10.1101/2025.02.19.639204DOI Listing

Publication Analysis

Top Keywords

subcellular compartments
12
laser interactions
8
interactions subcellular
8
laser
6
subcellular
5
real-time site-specific
4
site-specific perturbation
4
perturbation dynamic
4
dynamic subcellular
4
compartments femtosecond
4

Similar Publications

biGMamAct: efficient CRISPR/Cas9-mediated docking of large functional DNA cargoes at the locus.

Synth Biol (Oxf)

February 2025

EMBL Grenoble, European Molecular Biology Laboratory, 71 avenue des Martyrs, Grenoble Cedex 9 CS 90181, 38042, France.

Recent advances in molecular and cell biology and imaging have unprecedentedly enabled multiscale structure-functional studies of entire metabolic pathways from atomic to micrometer resolution and the visualization of macromolecular complexes , especially if these molecules are expressed with appropriately engineered and easily detectable tags. However, genome editing in eukaryotic cells is challenging when generating stable cell lines loaded with large DNA cargoes. To address this limitation, here, we have conceived biGMamAct, a system that allows the straightforward assembly of a multitude of genetic modules and their subsequent integration in the genome at the locus with high efficacy, through standardized cloning steps.

View Article and Find Full Text PDF

In eukaryotic cells, the subcellular localization of proteins is inherently linked to their function. Since viruses rely on the host cellular machinery to complete their life cycle, viral proteins are expected to employ the host transport machinery to reach various compartments. Several factors, including the multifunctional nature of viral proteins, the stage of virus infection, and interactions with both viral and host proteins, influence the final destination of viral proteins.

View Article and Find Full Text PDF

Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave (CW) lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, limiting real-time perturbation of biomolecules with mobility or complex distribution.

View Article and Find Full Text PDF

The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asyn-chronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging.

View Article and Find Full Text PDF

Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis.

Biochem Biophys Res Commun

March 2025

Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!