Ongoing mutagenesis in cancer drives genetic diversity throughout the natural history of cancers. As the activities of mutational processes are dynamic throughout evolution, distinguishing the mutational signatures of 'active' and 'historical' processes has important implications for studying how tumors evolve. This can aid in understanding mutagenic states at the time of presentation, and in associating active mutational process with therapeutic resistance. As bulk sequencing primarily captures historical mutational processes, we studied whether ultra-low-coverage single-cell whole-genome sequencing (scWGS), which measures the distribution of mutations across hundreds or thousands of individual cells, could enable the distinction between historical and active mutational processes. While technical challenges and data sparsity have limited mutation analysis in scWGS, we show that these data contain valuable information about dynamic mutational processes. To robustly interpret single nucleotide variants (SNVs) in scWGS, we introduce ArtiCull, a method to identify and remove SNV artifacts by leveraging evolutionary constraints, enabling reliable detection of mutations for signature analysis. Applying this approach to scWGS data from pancreatic ductal adenocarcinoma (PDAC), triple-negative breast cancer (TNBC), and high-grade serous ovarian cancer (HGSOC), we uncover temporal and spatial patterns in mutational processes. In PDAC, we observe a temporal increase in mismatch repair deficiency (MMRd). In cisplatin-treated TNBC patient-derived xenografts, we identify therapy-induced mutagenesis and inactivation of APOBEC3 activity. In HGSOC, we show distinct patterns of APOBEC3 mutagenesis, including late tumor-wide activation in one case and clade-specific enrichment in another. Additionally, we detect a clone-specific increase in SBS17 activity, in a clone previously linked to recurrence. Our findings establish ultra-low-coverage scWGS as a powerful approach for studying active mutational processes that may influence ongoing clonal evolution and therapeutic resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888314 | PMC |
http://dx.doi.org/10.1101/2025.02.24.639589 | DOI Listing |
Pulmonary hypertension (PH) stands as a tumor paradigm cardiovascular disease marked by hyperproliferation of cells and vascular remodeling, culminating in heart failure. Complex genetic and epigenetic mechanisms collectively contribute to the disruption of pulmonary vascular homeostasis. In recent years, advancements in research technology have identified numerous gene deletions and mutations, in addition to , that are closely associated with the vascular remodeling process in PH.
View Article and Find Full Text PDFClin Mol Hepatol
March 2025
Department of Gastroenterology and Hepatology/Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
Background/aims: Previously, we advocated the importance of classifying hepatocellular carcinoma (HCC) based on physiological functions. This study aims to classify HCC by focusing on liver-intrinsic metabolism and glycolytic pathway in cancer cells.
Methods: Comprehensive RNA/DNA sequencing, immunohistochemistry, and radiological evaluations were performed on HCC tissues from the training cohort (n=136) and validated in 916 public samples.
Sheng Li Xue Bao
February 2025
Department of Neurobiology, School of Basic Medical Sciences, School of Basic Medical Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1 mice. The primary microglia cells of wild-type and CD200R1 mice were cultured and treated with bacterial lipopolysaccharide (LPS).
View Article and Find Full Text PDFSci Rep
March 2025
Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent and lethal malignancy, with a five-year survival rate of just 50% for cases of locally advanced disease. Chromosomal aberrations, particularly the deletion of the short arm of chromosome 3 (3p), have been strongly associated with poor prognosis and more aggressive tumor phenotypes. The tumor microenvironment (TME) plays a pivotal role in tumor progression and resistance to therapy.
View Article and Find Full Text PDFNat Commun
March 2025
Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
While DNA:RNA hybrids contribute to multiple genomic transactions, their unscheduled formation is a recognized source of DNA lesions. Here, through a suite of systematic screens, we rather observed that a wide range of yeast mutant situations primarily triggering DNA damage actually leads to hybrid accumulation. Focusing on Okazaki fragment processing, we establish that genic hybrids can actually form as a consequence of replication-born discontinuities such as unprocessed flaps or unligated Okazaki fragments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!