Chronic low back pain (LBP), often correlated with intervertebral disc degeneration, is a leading source of disability worldwide yet remains poorly understood. Current treatments often fail to provide sustained relief, highlighting the need to better understand the mechanisms driving discogenic LBP. During disc degeneration, the extracellular matrix degrades, allowing nociceptive nerve fibers to innervate previously aneural disc regions. Persistent mechanical and inflammatory stimulation of nociceptors can induce plastic changes within dorsal root ganglia (DRG) neurons, characterized by altered gene expression, enhanced excitability, and lowered activation thresholds. Although these transcriptional changes have been described in other pain states, including osteoarthritis, they remain underexplored in discogenic LBP. To address this gap, this study represents the first application of comprehensive single-nuclei RNA sequencing of DRG neurons in a rat model of chronic discogenic LBP. Eighteen distinct DRG subpopulations were identified and mapped to existing mouse and cross-species atlases revealing strong similarities in neuronal populations with the mouse. Differential expression analysis revealed increased expression of pain-associated genes, including and , and neuroinflammatory mediators such as and , in LBP animals. Axial hypersensitivity, measured using grip strength, significantly correlated with increased expression of which suggests their role in maintaining axial hypersensitivity in this model. These findings establish a relationship between DRG transcriptomic changes and axial hypersensitivity in a discogenic LBP model, identifying potential molecular targets for non-opioid treatments and advancing understanding of discogenic LBP mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888191PMC
http://dx.doi.org/10.1101/2025.02.19.639130DOI Listing

Publication Analysis

Top Keywords

discogenic lbp
20
axial hypersensitivity
12
single-nuclei rna
8
rna sequencing
8
dorsal root
8
root ganglia
8
chronic discogenic
8
low pain
8
model chronic
8
disc degeneration
8

Similar Publications

Chronic low back pain (LBP), often correlated with intervertebral disc degeneration, is a leading source of disability worldwide yet remains poorly understood. Current treatments often fail to provide sustained relief, highlighting the need to better understand the mechanisms driving discogenic LBP. During disc degeneration, the extracellular matrix degrades, allowing nociceptive nerve fibers to innervate previously aneural disc regions.

View Article and Find Full Text PDF

Introduction: Degenerative changes in the intervertebral disc (IVD) are known to be a main cause of low back pain (LBP), oftentimes necessitating interventions that may or may not be successful due to a lack of understanding in the degenerative phenotype and its mechanisms. Understanding the molecular mechanisms of disc degeneration can help design new therapies to induce disc regeneration and reduce back pain. This work aimed to understand the effects of conditional deletion of Sox9 in aggrecan-expressing cells on intervertebral disc degeneration and its underlying mechanisms in mice.

View Article and Find Full Text PDF

Introduction: This study investigates the epigenetic landscape underlying painful intervertebral disk (IVD) degeneration in a single subject with a history of low back pain (LBP). Intervertebral disk degeneration is associated with LBP in some individuals; however, there is often a discrepancy between degeneration and pain. We hypothesize that DNA methylation, an epigenetic mechanism previously linked to discogenic LBP, is dysregulated in symptomatic vs asymptomatic IVDs.

View Article and Find Full Text PDF

Background: Pain of a chronic nature remains the foremost concern in tertiary spine clinics, yet its elusive nature and quantification challenges persist. Despite extensive research and education on low back pain (LBP), the realm of diagnostic practices lacks a unified approach. Clinically, LBP exhibits a multifaceted character, encompassing conventional assessments of severity and disability, alongside nuanced attributes like pain characterization, duration, and patient expectations.

View Article and Find Full Text PDF

Stem Cells Therapy as a Treatment for Discogenic Low Back Pain: A Systematic Review.

Int J Spine Surg

January 2025

Spine Consultant, Department of Orthopedic and Traumatology, Mayapada Hospital Kuningan, Jakarta, Indonesia.

Background: Low back pain (LBP) is 1 of the most common problems that present in 80% of people. LBP can be caused by some pathologies, with discogenic pain being 1 source. Pain from LBP can become chronic and also cause disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!