While MYC is a significant oncogenic transcription factor driver of cancer, directly targeting MYC has remained challenging due to its intrinsic disorder and poorly defined structure, deeming it "undruggable." Whether transient pockets formed within intrinsically disordered and unstructured regions of proteins can be selectively targeted with small molecules remains an outstanding challenge. Here, we developed a bespoke stereochemically-paired spirocyclic oxindole aziridine covalent library and screened this library for degradation of MYC. Through this screen, we identified a hit covalent ligand KL2-236, bearing a unique sulfinyl aziridine warhead, that engaged MYC as pure MYC/MAX protein complex and in cancer cells to destabilize MYC, inhibit MYC transcriptional activity and degrade MYC in a proteasome-dependent manner through targeting intrinsically disordered C203 and D205 residues. Notably, this reactivity was most pronounced for specific stereoisomers of KL2-236 with a diastereomer KL4-019 that was largely inactive. Mutagenesis of both C203 and D205 completely attenuated KL2-236-mediated MYC degradation. We have also optimized our initial KL2-236 hit compound to generate a more durable MYC degrader KL4-219A in cancer cells. Our results reveal a novel ligandable site within MYC and indicate that certain intrinsically disordered regions within high-value protein targets, such as MYC, can be interrogated by isomerically unique chiral small molecules, leading to destabilization and degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888305 | PMC |
http://dx.doi.org/10.1101/2025.02.24.639755 | DOI Listing |
Ann Hematol
March 2025
Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA.
NAR Cancer
March 2025
ProCURE, Catalan Institute of Oncology, L'Hospitalet del Llobregat, Barcelona 08908, Spain.
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood.
View Article and Find Full Text PDFWhile MYC is a significant oncogenic transcription factor driver of cancer, directly targeting MYC has remained challenging due to its intrinsic disorder and poorly defined structure, deeming it "undruggable." Whether transient pockets formed within intrinsically disordered and unstructured regions of proteins can be selectively targeted with small molecules remains an outstanding challenge. Here, we developed a bespoke stereochemically-paired spirocyclic oxindole aziridine covalent library and screened this library for degradation of MYC.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Despite a high cure rate, too many patients show refractory (ref) or relapsed (rel) disease. This study examines the frequency of recurring gene mutations and their interplay with well-known biomarkers in female and male patients between 18 and 80 years with ref/rel DLBCL compared to patients with complete remission (CR) to identify biological risk factors associated with treatment response, using cohorts of R-CHOP-like treated DLBCL enrolled in clinical trials of the DSHNHL.
View Article and Find Full Text PDFCurr Mol Med
March 2025
Department of Respiratory & Critical Medicine, Shenzhen Municipal Qianhai Shekou Free Trade Zone Hospital, No. 36, Shekou Industrial Seventh Road, Nanshan District, Shenzhen, 518067, China.
Objective: This study aimed to examine the molecular mechanisms involved in transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) in human lung adenocarcinoma (LUAD) A549 cells.
Methods: Proteins were extracted from cultured human LUAD A549 cells cultured under two conditions: untreated and treated with TGF-β (5 ng/ml) for 48 hours. The expression levels of EMT-related proteins, including E-cadherin, Vimentin, and α- smooth muscle actin, were assessed using western blotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!