Remarkable advances in high-throughput sequencing have enabled major biological discoveries and clinical applications, but achieving wider distribution and use depends critically on further improvements in scale and cost reduction. Nanopore sequencing has long held the promise for such progress, but has had limited market penetration. This is because efficient and accurate nanopore sequencing of nucleic acids has been challenged by fundamental signal-to-noise limitations resulting from the poor spatial resolution and molecular distinction of nucleobases. Here, we describe Sequencing by Expansion (SBX), a single-molecule sequencing technology that overcomes these limitations by using a biochemical conversion process to encode the sequence of a target nucleic acid molecule into an Xpandomer, a highly measurable surrogate polymer. Expanding over 50 times longer than the parent DNA templates, Xpandomers are engineered with high signal-to-noise reporter codes to enable facile, high-accuracy nanopore sequencing. We demonstrate the performance of SBX and present the specialized molecular structures, chemistries, enzymes and methods that enable it. The innovative molecular and systems engineering in SBX create a transformative technology to address the needs of existing and emerging sequencing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888190PMC
http://dx.doi.org/10.1101/2025.02.19.639056DOI Listing

Publication Analysis

Top Keywords

nanopore sequencing
12
sequencing
9
sequencing expansion
8
expansion sbx
8
single-molecule sequencing
8
sequencing technology
8
sbx
4
sbx novel
4
novel high-throughput
4
high-throughput single-molecule
4

Similar Publications

Background: Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.

View Article and Find Full Text PDF

pv. , description of a new pathovar causing leaf spot on crape myrtle.

Plant Dis

March 2025

North Carolina State University, Entomology and Plant Pathology, 1575 Varsity Drive, Varsity Research Building module 6, Raleigh, Raleigh, North Carolina, United States, 27695;

Bacterial leaf spot caused by Xanthomonas was reported in 2014 as a new disease of crape myrtle. Unfortunately, this foundational strain was lost, preventing further experimentation, sequencing of the genome, and phylogenetic analysis. This work describes a collection of Xanthomonas strains isolated from angular leaf spot lesions on crape myrtle in North Carolina from 2014 to 2023.

View Article and Find Full Text PDF

Avian influenza virus (AIV) currently causes a panzootic with extensive mortality in wild birds, poultry, and wild mammals, thus posing a major threat to global health and underscoring the need for efficient monitoring of its distribution and evolution. We here utilized a well-defined AIV strain to systematically investigate AIV genetic characterization through rapid, portable nanopore sequencing by comparing the latest DNA and RNA nanopore sequencing approaches and various computational pipelines for viral consensus sequence generation and phylogenetic analysis. We show that the latest direct RNA nanopore sequencing updates improve consensus sequence generation, but that the application of the latest DNA nanopore chemistry after reverse transcription and amplification outperforms, such native viral RNA sequencing by achieving higher sequencing accuracy and throughput.

View Article and Find Full Text PDF

Teinturier grapevines, known for their pigmented flesh berries due to anthocyanin production, are valuable for enhancing the pigmentation of wine, for potential health benefits, and for investigating anthocyanin production in plants. Here, we assembled and annotated the Dakapo and Rubired genomes, two teinturier varieties. For Dakapo, we combined Nanopore sequencing, Illumina sequencing, and scaffolding to the existing grapevine assembly to generate a final assembly of 508.

View Article and Find Full Text PDF

DNA methylation consists of 5-methylcytosine and N6-methyl deoxyadenosine (6mA) and is crucial in plant development. However, its specific role and potential mechanism to initiate cotton fibers remain unclear. This study employed Oxford Nanopore Technologies (ONT) sequencing to analyze DNA methylation alterations in ZM24 and ZM24 fuzzless-lintless (ZM24fl) during fiber initiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!