One of the hallmarks of aging is a decline in the function of mitochondria, which is often accompanied by altered morphology and dynamics. In some cases, these changes may reflect macromolecular damage to mitochondria that occurs with aging and stress, while in other cases they may be part of a programmed, adaptive response. In this study, we report that mitochondria undergo dramatic morphological changes in chronologically aged yeast cells. These changes are characterized by a large, rounded morphology, decreased co-localization of outer membrane and matrix markers, and decreased mitochondrial membrane potential. Notably, these transitions are prevented by pharmacological or genetic interventions that perturb sphingolipid biosynthesis, indicating that sphingolipids are required for these mitochondrial transitions in aging cells. Consistent with these findings, we observe that overexpression of inositol phospholipid phospholipase (Isc1) prevents these alterations to mitochondria morphology in aging cells. We also report that mitochondria exhibit similar sphingolipid-dependent morphological transitions following acute exposure to oxidative stress. These findings suggest that sphingolipid metabolism contributes to mitochondrial remodeling in aging cells and during oxidative stress, perhaps as a result of damaged sphingolipids that localize to mitochondrial membranes. These findings underscore the complex relationship between mitochondria function and sphingolipid metabolism, particularly in the context of aging and stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888424PMC
http://dx.doi.org/10.1101/2025.02.26.640157DOI Listing

Publication Analysis

Top Keywords

sphingolipid metabolism
12
oxidative stress
12
aging cells
12
remodeling aging
8
aging stress
8
report mitochondria
8
mitochondria
7
aging
7
stress
5
sphingolipid
4

Similar Publications

Introduction: This systematic review explores the hypothesis that various lipid categories and lipid metabolism-related genomic variations link to mental disorders, seeking potential clinically useful markers.

Methods: We searched PubMed, Scopus, and PsycInfo databases until October 12th, 2024, using terms related to lipidomics, lipid-related genomics, and different mental disorders, i.e.

View Article and Find Full Text PDF

Background: Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.

View Article and Find Full Text PDF

The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset.

View Article and Find Full Text PDF

Dual action of sphingosine 1-phosphate pathway in in vitro models of global cerebral ischemia.

Neurobiol Dis

March 2025

Dept. of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy. Electronic address:

It is well accepted that sphingolipids play an important role in the pathological process of cerebral ischemia. In the present study we have investigated the involvement of sphingosine 1-phosphate (S1P) pathway in two different in vitro models of global ischemia. In organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) we evaluated the mRNA expression of S1P metabolic enzymes and receptors (S1P) by Real Time-PCR.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is characterized by relative insulin deficiency due to pancreatic beta cell dysfunction and insulin resistance in different tissues. Not only beta cells but also other islet cells (alpha, delta, and pancreatic polypeptide [PP]) are critical for maintaining glucose homeostasis in the body. In this overarching context and given that a deeper understanding of T2D pathophysiology and novel molecular targets is much needed, studies that integrate experimental and computational biology approaches offer veritable prospects for innovation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!