A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Granular hydrogels as brittle yield stress fluids. | LitMetric

While granular hydrogels are increasingly used in biomedical applications, methods to capture their rheological behavior generally consider shear-thinning and self-healing properties or produce ensemble metrics such as the dynamic moduli. Analytical approaches paired with common oscillatory shear tests can describe not only solid-like and fluid-like behavior of granular hydrogels but also transient characteristics inherent in yielding and unyielding processes. Combining oscillatory shear testing with consideration of Brittility (Bt) via the Kamani-Donley-Rogers (KDR) model, we show granular hydrogels behave as brittle yield stress fluids with complex transient rheology. We quantify steady and transient rheology as a function of microgel (composition; diameter) and granular (packing; droplet heterogeneity) assembly properties for mixtures of polyethylene glycol and gelatin microgels. The KDR model with Bt captures granular hydrogel behavior for a wide range of design parameters, reducing the complex transient rheology to a determination of model parameters. We describe the impact of composition on rheological behavior and model parameters in monolithic and mixed granular hydrogels. The model robustly captures self-healing behavior and reveals granular relaxation time depends on strain amplitude. This quantitative framework is an important step toward rational design of granular hydrogels for applications ranging from injection and stabilization to 3D bioprinting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888328PMC
http://dx.doi.org/10.1101/2025.02.22.639638DOI Listing

Publication Analysis

Top Keywords

granular hydrogels
24
transient rheology
12
granular
9
brittle yield
8
yield stress
8
stress fluids
8
rheological behavior
8
oscillatory shear
8
kdr model
8
complex transient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!