A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compositional architecture: Orthogonal neural codes for task context and spatial memory in prefrontal cortex. | LitMetric

The prefrontal cortex (PFC) is crucial for maintaining working memory across diverse cognitive tasks, yet how it adapts to varying task demands remains unclear. Compositional theories propose that cognitive processes in neural network rely on shared components that can be reused to support different behaviors. However, previous studies have suggested that working memory components are task specific, challenging this framework. Here, we revisit this question using a population-based approach. We recorded neural activity in macaque monkeys performing two spatial working memory tasks with opposing goals: one requiring movement toward previously presented spatial locations (look task) and the other requiring avoidance of those locations (no-look task). Despite differences in task demands, we found that spatial memory representations were largely conserved at the population level, with a common low-dimensional neural subspace encoding memory across both tasks. In parallel, task identity was encoded in an orthogonal subspace, providing a stable and independent representation of contextual information. These results provide neural evidence for a compositional model of working memory, where representational geometry enables the efficient and flexible reuse of mnemonic codes across behavioral contexts while maintaining an independent representation of context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888474PMC
http://dx.doi.org/10.1101/2025.02.25.640211DOI Listing

Publication Analysis

Top Keywords

working memory
16
spatial memory
8
prefrontal cortex
8
task demands
8
memory tasks
8
independent representation
8
task
7
memory
7
neural
5
compositional architecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!