Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radios and cellphones use frequency modulation (FM) of an oscillating carrier signal to reliably transmit multiplexed data while rejecting noise. Here, we establish a biochemical analogue of this paradigm using genetically encoded protein oscillators (GEOs) as carrier signals in circuits that enable continuous, real-time FM streaming of single-cell data. GEOs are constructed from evolutionarily diverse MinDE-family ATPase and activator modules that generate fast synthetic protein oscillations when co-expressed in human cells. These oscillations serve as a single-cell carrier signal, with frequency and amplitude controlled by GEO component levels and activity. We systematically characterize 169 ATPase/activator GEO pairs and engineer composite GEOs with multiple competing activators to develop a comprehensive platform for waveform programming. Using these principles, we design circuits that modulate GEO frequency in response to cellular activity and decode their responses using a calibrated machine-learning model to demonstrate sensitive, real-time FM streaming of transcription and proteasomal degradation dynamics in single cells. GEOs establish a dynamically controllable biochemical carrier signal, unlocking noise-resistant FM data-encoding paradigms that open new avenues for dynamic single-cell analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888400 | PMC |
http://dx.doi.org/10.1101/2025.02.28.640587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!